scholarly journals Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea

2013 ◽  
Vol 118 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo
2012 ◽  
Vol 69 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo

Abstract Brown, Z. W., and Arrigo, K. R. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. – ICES Journal of Marine Science, 69: . Satellite remote sensing data were used to examine recent trends in sea-ice cover and net primary productivity (NPP) in the Bering Sea and Arctic Ocean. In nearly all regions, diminished sea-ice cover significantly enhanced annual NPP, indicating that light-limitation predominates across the seasonally ice-covered waters of the northern hemisphere. However, long-term trends have not been uniform spatially. The seasonal ice pack of the Bering Sea has remained consistent over time, partially because of winter winds that have continued to carry frigid Arctic air southwards over the past six decades. Hence, apart from the “Arctic-like” Chirikov Basin (where sea-ice loss has driven a 30% increase in NPP), no secular trends are evident in Bering Sea NPP, which averaged 288 ± 26 Tg C year−1 over the satellite ocean colour record (1998–2009). Conversely, sea-ice cover in the Arctic Ocean has plummeted, extending the open-water growing season by 45 d in just 12 years, and promoting a 20% increase in NPP (range 441–585 Tg C year−1). Future sea-ice loss will likely stimulate additional NPP over the productive Bering Sea shelves, potentially reducing nutrient flux to the downstream western Arctic Ocean.


2021 ◽  
pp. 102655
Author(s):  
Maria Vernet ◽  
Ingrid Ellingsen ◽  
Christian Marchese ◽  
Simon Bélanger ◽  
Mattias Cape ◽  
...  

Author(s):  
Wei Cheng ◽  
Enrique Curchitser ◽  
Carol Ladd ◽  
Phyllis Stabeno ◽  
Muyin Wang

2020 ◽  
Vol 20 (11) ◽  
pp. 6521-6539 ◽  
Author(s):  
Hans Brenna ◽  
Steffen Kutterolf ◽  
Michael J. Mills ◽  
Kirstin Krüger

Abstract. The supereruption of Los Chocoyos (14.6∘ N, 91.2∘ W) in Guatemala ∼84 kyr ago was one of the largest volcanic events of the past 100 000 years. Recent petrologic data show that the eruption released very large amounts of climate-relevant sulfur and ozone-destroying chlorine and bromine gases (523±94 Mt sulfur, 1200±156 Mt chlorine, and 2±0.46 Mt bromine). Using the Earth system model (ESM) of the Community Earth System Model version 2 (CESM2) coupled with the Whole Atmosphere Community Climate Model version 6 (WACCM6), we simulated the impacts of the sulfur- and halogen-rich Los Chocoyos eruption on the preindustrial Earth system. Our simulations show that elevated sulfate burden and aerosol optical depth (AOD) persists for 5 years in the model, while the volcanic halogens stay elevated for nearly 15 years. As a consequence, the eruption leads to a collapse of the ozone layer with global mean column ozone values dropping to 50 DU (80 % decrease) and leading to a 550 % increase in surface UV over the first 5 years, with potential impacts on the biosphere. The volcanic eruption shows an asymmetric-hemispheric response with enhanced aerosol, ozone, UV, and climate signals over the Northern Hemisphere. Surface climate is impacted globally due to peak AOD of >6, which leads to a maximum surface cooling of >6 K, precipitation and terrestrial net primary production decrease of >25 %, and sea ice area increases of 40 % in the first 3 years. Locally, a wetting (>100 %) and strong increase in net primary production (NPP) (>700 %) over northern Africa is simulated in the first 5 years and related to a southward shift of the Intertropical Convergence Zone (ITCZ) to the southern tropics. The ocean responds with pronounced El Niño conditions in the first 3 years that shift to the southern tropics and are coherent with the ITCZ change. Recovery to pre-eruption ozone levels and climate takes 15 years and 30 years, respectively. The long-lasting surface cooling is sustained by an immediate increase in the Arctic sea ice area, followed by a decrease in poleward ocean heat transport at 60∘ N which lasts up to 20 years. In contrast, when simulating Los Chocoyos conventionally by including sulfur and neglecting halogens, we simulate a larger sulfate burden and AOD, more pronounced surface climate changes, and an increase in column ozone. By comparing our aerosol chemistry ESM results to other supereruption simulations with aerosol climate models, we find a higher surface climate impact per injected sulfur amount than previous studies for our different sets of model experiments, since the CESM2(WACCM6) creates smaller aerosols with a longer lifetime, partly due to the interactive aerosol chemistry. As the model uncertainties for the climate response to supereruptions are very large, observational evidence from paleo archives and a coordinated model intercomparison would help to improve our understanding of the climate and environment response.


1980 ◽  
Vol 108 (12) ◽  
pp. 2015-2023 ◽  
Author(s):  
Carol H. Pease

2016 ◽  
Vol 12 (11) ◽  
pp. 20160223 ◽  
Author(s):  
Mati Kahru ◽  
Zhongping Lee ◽  
B. Greg Mitchell ◽  
Cynthia D. Nevison

The influence of decreasing Arctic sea ice on net primary production (NPP) in the Arctic Ocean has been considered in multiple publications but is not well constrained owing to the potentially large errors in satellite algorithms. In particular, the Arctic Ocean is rich in coloured dissolved organic matter (CDOM) that interferes in the detection of chlorophyll a concentration of the standard algorithm, which is the primary input to NPP models. We used the quasi-analytic algorithm (Lee et al . 2002 Appl. Opti. 41 , 5755−5772. ( doi:10.1364/AO.41.005755 )) that separates absorption by phytoplankton from absorption by CDOM and detrital matter. We merged satellite data from multiple satellite sensors and created a 19 year time series (1997–2015) of NPP. During this period, both the estimated annual total and the summer monthly maximum pan-Arctic NPP increased by about 47%. Positive monthly anomalies in NPP are highly correlated with positive anomalies in open water area during the summer months. Following the earlier ice retreat, the start of the high-productivity season has become earlier, e.g. at a mean rate of −3.0 d yr −1 in the northern Barents Sea, and the length of the high-productivity period has increased from 15 days in 1998 to 62 days in 2015. While in some areas, the termination of the productive season has been extended, owing to delayed ice formation, the termination has also become earlier in other areas, likely owing to limited nutrients.


Author(s):  
Hugh W. Ducklow ◽  
Michael R. Stukel ◽  
Rachel Eveleth ◽  
Scott C. Doney ◽  
Tim Jickells ◽  
...  

New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15 NO 3 – uptake), O 2  : argon-based NCP and sinking particle export (based on the 238 U :  234 Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012–2014. Net seasonal-scale changes in water column inventories (0–150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O 2 ) did not differ significantly. New P and NCP(O 2 ) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways. This article is part of the theme issue ‘The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


Sign in / Sign up

Export Citation Format

Share Document