scholarly journals Diagnosis of water mass transformation and formation rates in a high-resolution GCM of the North Pacific

2013 ◽  
Vol 118 (3) ◽  
pp. 1051-1069 ◽  
Author(s):  
S. Nishikawa ◽  
H. Tsujino ◽  
K. Sakamoto ◽  
H. Nakano
2015 ◽  
Vol 28 (11) ◽  
pp. 4585-4594 ◽  
Author(s):  
Tatsuo Suzuki ◽  
Masayoshi Ishii

Abstract Using historical ocean hydrographic observations, decadal to multidecadal sea level changes from 1951 to 2007 in the North Pacific were investigated focusing on vertical density structures. Hydrographically, the sea level changes could reflect the following: changes in the depth of the main pycnocline, density gradient changes across the pycnocline, and modification of the water mass density structure within the pycnocline. The first two processes are characterized as the first baroclinic mode. The changes in density stratification across the pycnocline are sufficiently small to maintain the vertical profile of the first baroclinic mode in this analysis period. Therefore, the first mode should represent mainly the dynamical response to the wind stress forcing. Meanwhile, changes in the composite of all modes of order greater than 1 (remaining baroclinic mode) can be attributed to water mass modifications above the pycnocline. The first baroclinic mode is associated with 40–60-yr fluctuations in the subtropical gyre and bidecadal fluctuations of the Kuroshio Extension (KE) in response to basin-scale wind stress changes. In addition to this, the remaining baroclinic mode exhibits strong variability around the recirculation region south of the KE and regions downstream of the KE, accompanied by 40–60-yr and bidecadal fluctuations, respectively. These fluctuations follow spinup/spindown of the subtropical gyre and meridional shifts of the KE shown in the first mode, respectively. A lag correlation analysis suggests that interdecadal sea level changes due to water mass density changes are a secondary consequence of changes in basin-scale wind stress forcing related to the ocean circulation changes associated with the first mode.


Author(s):  
Ying He ◽  
Jianing Wang ◽  
Fan Wang ◽  
Toshiyuki Hibiya

AbstractThe Mindanao Current (MC) bridges the North Pacific low-latitude western boundary current system region and the Indonesian Seas by supplying the North Pacific waters to the Indonesian Throughflow. Although the previous study speculated that the diapycnal mixing along the MC might be strong on the basis of the water mass analysis of the gridded climatologic dataset, the real spatial distribution of diapycnal mixing along the MC has remained to be clarified. We tackle this question here by applying a finescale parameterization to temperature and salinity profiles obtained using two rapid-sampling profiling Argo floats that drifted along the MC. The western boundary (WB) region close to the Mindanao Islands and the Sangihe Strait are the two mixing hotspots along the MC, with energy dissipation rate ε and diapycnal diffusivity Kρ enhanced up to ~ 10–6 W kg−1 and ~ 10–3 m2 s−1, respectively. Except for the above two mixing hotspots, the turbulent mixing along the MC is mostly weak, with ε and Kρ to be 10–11–10–9 W kg−1 and 10–6–10–5 m2 s−1, respectively. Strong mixing in the Sangihe Strait can be basically attributed to the existence of internal tides, whereas strong mixing in the WB region suggests the existence of internal lee waves. We also find that water mass transformation along the MC mainly occurs in the Sangihe Strait where the water masses are subjected to strong turbulent mixing during a long residence time.


2011 ◽  
Vol 41 (4) ◽  
pp. 666-681 ◽  
Author(s):  
Eitarou Oka ◽  
Toshio Suga ◽  
Chiho Sukigara ◽  
Katsuya Toyama ◽  
Keishi Shimada ◽  
...  

Abstract Hydrographic data obtained by high-resolution shipboard observations and Argo profiling floats have been analyzed to study the mesoscale structure and circulation of the North Pacific Subtropical Mode Water (STMW). The float data show that in the late winter of 2008, STMW having a temperature of approximately 18.8°, 17.7°, and 16.6°C formed west of 140°E, at 140°–150°E, and east of 150°E, respectively, in the recirculation gyre south of the Kuroshio Extension. After spring, the newly formed STMW gradually shift southward, decreasing in thickness. Simultaneously, the STMWs of 16.6° and 17.7°C are gradually stirred and then mixed in terms of properties. In late fall, they seem to be integrated to form a single group of STMWs having a temperature centered at 17.2°C. Such STMW circulation in 2008 is much more turbulent than that in 2006, which was investigated in a previous study. The difference between the two years is attributed to the more variable state of the Kuroshio Extension in 2008, associated with stronger eddy activities in the STMW formation region, which enhance the eddy transport of STMW. High-resolution shipboard observations were carried out southeast of Japan at 141°–147°E in the early fall of 2008. To the south of the Kuroshio Extension, STMW exists as a sequence of patches with a horizontal scale of 100–200 km, whose thick portions correspond well to the mesoscale deepening of the permanent pycnocline. The western (eastern) hydrographic sections are occupied mostly by the 17.7°C (16.6°C) STMW, within which the 16.6°C (17.7°C) STMW exists locally, mostly at locations where both the permanent pycnocline depth and the STMW thickness are maximum. This structure implies that the STMW patches are transported away from their respective formation sites, corresponding to a shift in the mesoscale anticyclonic circulations south of the Kuroshio Extension. Furthermore, 20%–30% of the observed STMW pycnostads have two or three potential vorticity minima, mostly near temperatures of 16.6° and 17.7°C. The authors presume that such a structure formed as a result of the interleaving of the 16.6° and 17.7°C STMWs after they are stirred by mesoscale circulations, following which they are vertically mixed to form the 17.2°C STMW observed in late fall. These results indicate the importance of horizontal processes in destroying the vertically uniform structure of STMW after spring, particularly when the Kuroshio Extension is in a variable state.


2012 ◽  
Vol 42 (7) ◽  
pp. 1233-1241 ◽  
Author(s):  
Hideharu Sasaki ◽  
Patrice Klein

Abstract Following recent studies based on altimetric data, this paper analyses the spectral characteristics of the sea surface height (SSH) using a new realistic simulation of the North Pacific Ocean with high resolution ( in the horizontal and 100 vertical levels). This simulation resolves smaller scales (down to ≈10 km) than altimetric data (limited to 70 km because of the noise level). In high eddy kinetic energy (EKE) regions (as in the western part), SSH spectral slope almost follows a k−4 (with k the wavenumber) or slightly steeper law in agreement with altimeter studies. The new result is that, unlike altimeter studies, such a k−4 slope is also observed in low EKE regions (as in the eastern part). In these regions, this slope mostly concerns scales not well resolved by altimetric data. Such k−4 SSH spectral slopes are weaker from what is expected from quasigeostrophic turbulence theory but closer to surface quasigeostrophic (SQG) turbulence theory. The consequence is that the small scales concerned by these spectral slopes, in particular in low EKE regions, may significantly affect the larger ones because of the inverse kinetic energy cascade. These results need to be confirmed using a longer numerical integration. They also need to be corroborated by high-resolution observations.


2010 ◽  
Vol 33 (3-4) ◽  
pp. 205-223 ◽  
Author(s):  
Hiroyuki Tsujino ◽  
Shiro Nishikawa ◽  
Kei Sakamoto ◽  
Hideyuki Nakano ◽  
Hiroshi Ishizaki

2013 ◽  
Vol 63 (2) ◽  
pp. 239-263 ◽  
Author(s):  
Tatsuya Hayakawa ◽  
Hiromichi Hirano

Abstract Hayakawa, T., Hirano, H. 2013. A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan. Acta Geologica Polonica, 63 (2), 239-263. Warszawa. Biostratigraphic correlations of inoceramid bivalves between the North Pacific and Euramerican provinces have been difficult because the inoceramid biostratigraphy of the Japanese strata has been based on endemic species of the northwest Pacific. In this study, carbon stable isotope fluctuations of terrestrial organic matter are assembled for the Upper Cretaceous Yezo Group in the Haboro and Obira areas, Hokkaido, Japan, in order to revise the chronology of the inoceramid biozonation in Japan. The carbon isotope curves are correlated with those of marine carbonates in English and German sections with the aid of age-diagnostic taxa. According to the correlations of the carbon isotope curves, 11 isotope events are recognised in the sections studied. As a result of these correlations, the chronology of the inoceramid biozones of the Northwest Pacific has been considerably revised. The revised inoceramid biozones suggest that the timing of the origination and extinction of the inoceramids in the North Pacific biotic province is different from the stage/substage boundaries defined by inoceramids, as used in Europe and North America.


Sign in / Sign up

Export Citation Format

Share Document