scholarly journals Van Allen Probes Observation of a Fundamental Poloidal Standing Alfvén Wave Event Related to Giant Pulsations

2018 ◽  
Vol 123 (6) ◽  
pp. 4574-4593 ◽  
Author(s):  
Kazue Takahashi ◽  
Seth G. Claudepierre ◽  
Robert Rankin ◽  
Ian R. Mann ◽  
Charles W. Smith
2020 ◽  
Author(s):  
Vyacheslav Pilipenko ◽  
Olga Kozyreva ◽  
Emma Bland ◽  
Lisa Baddeley

<p>We compare the simultaneous magnetometer, SuperDARN radar, and GPS observations during Pc5 wave event on March 02, 2002. A possible correspondence between those instruments may help to determine the mechanism of the ionosphere modulation by magnetospheric disturbances. Transient Pc5 pulsations (2.6 mHz) in the morning sector, stimulated by the solar wind density jumps, have been detected simultaneously by ground magnetometers and the Kodiak and King Salmon SuperDARN radars.  Besides that, pulsations with the same periodicity have been found in the rate of total electron content (TEC), dTEC/dt (ROT), variations in several GPS radio paths. The ratio between the spectral amplitudes of the Doppler velocities and magnetic pulsations (X component) on the ground are Vx/Bx~7-12 (m/s)/nT and Vy/Bx~27 (m/s)/nT. The ratio between the oscillation amplitudes of ROT and ionospheric Doppler meridional (Vx) and azimuthal (Vy) velocities are ROT/Vx~0.02-0.07 (dTECu/min)/(m/s) and ROT/Vy~0.004 (dTECu/min)/(m/s). The correspondence between simultaneous periodic variations of the ionospheric Doppler velocity and geomagnetic field can be reasonably well interpreted quantitively on the basis of theory of Alfven wave interaction with the thin ionospheric layer. However, order-of-magnitudes estimates of possible TEC modulation mechanisms show that a responsible mechanism which can interpret the observed ratios has not been found yet. </p>


2015 ◽  
Vol 120 (7) ◽  
pp. 5465-5488 ◽  
Author(s):  
M. J. Engebretson ◽  
J. L. Posch ◽  
J. R. Wygant ◽  
C. A. Kletzing ◽  
M. R. Lessard ◽  
...  

2001 ◽  
Vol 7 (2s) ◽  
pp. 59-66
Author(s):  
A.K. Yukhimuk ◽  
◽  
V.N. Fedun ◽  
Yu. Voitenko ◽  
E.K. Sirenko ◽  
...  

2002 ◽  
Vol 8 (5-6) ◽  
pp. 96-101
Author(s):  
V.N. Fedun ◽  
◽  
A.K. Yukhimuk ◽  
A.D. Voitsekhovska ◽  
О.К. Cheremnykh ◽  
...  

1999 ◽  
Vol 5 (1) ◽  
pp. 48-51
Author(s):  
A.K. Yukhimuk ◽  
◽  
V.A. Yukhimuk ◽  
O.G. Fal'ko ◽  
E.K. Sirenko ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


1997 ◽  
Vol 4 (9) ◽  
pp. 3436-3438 ◽  
Author(s):  
V. S. Tsypin ◽  
S. V. Vladimirov ◽  
A. G. Elfimov ◽  
M. Tendler ◽  
A. S. de Assis ◽  
...  

1967 ◽  
Vol 5 (9) ◽  
pp. 719-722 ◽  
Author(s):  
D.L. Carter ◽  
J.C. Picard
Keyword(s):  

1997 ◽  
Vol 125 (6) ◽  
pp. 1185-1211 ◽  
Author(s):  
Michael L. Kaplan ◽  
Steven E. Koch ◽  
Yuh-Lang Lin ◽  
Ronald P. Weglarz ◽  
Robert A. Rozumalski

Sign in / Sign up

Export Citation Format

Share Document