scholarly journals Estimating Snow Mass in North America Through Assimilation of Advanced Microwave Scanning Radiometer Brightness Temperature Observations Using the Catchment Land Surface Model and Support Vector Machines

2018 ◽  
Vol 54 (9) ◽  
pp. 6488-6509 ◽  
Author(s):  
Yuan Xue ◽  
Barton A. Forman ◽  
Rolf H. Reichle
2019 ◽  
Author(s):  
Renaud Hostache ◽  
Dominik Rains ◽  
Kaniska Mallick ◽  
Marco Chini ◽  
Ramona Pelich ◽  
...  

Abstract. The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help in reducing errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. In particular, we use as forcings the ERA-Interim public dataset and we couple the CMEM radiative transfer model with a hydro-meteorological model enabling therefore soil moisture and SMOS-like brightness temperature simulations. The hydro-meteorological model is configured using recent developments of the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application as well as to data availability and computational requirements. In this case, the model spatial resolution is adapted to the spatial grid of the satellite data, and the soil stratification is tailored to the satellite datasets to be assimilated and the forcing data. The hydrological model is first calibrated using a sample of SMOS brightness temperature observations (period 2010–2011). Next, SMOS-derived brightness temperature observations are sequentially assimilated into the coupled SUPERFLEX-CMEM model (period 2010–2015). For this experiment, a Local Ensemble Transform Kalman Filter is used and the meteorological forcings (ERA interim-based rainfall, air and soil temperature) are perturbed to generate a background ensemble. Each time a SMOS observation is available, the SUPERFLEX state variables related to the water content in the various soil layers are updated and the model simulations are resumed until the next SMOS observation becomes available. Our empirical results show that the SUPERFLEX-CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set up using the CLM land surface model. This shows that a simple model, when carefully calibrated, can yield performance level similar to that of a much more complex model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72. The assimilation of SMOS brightness temperature observation into the SUPERFLEX-CMEM modelling chain improves the correlation between predicted and in situ observed soil moisture by 0.03 on average showing improvements similar to those obtained using the CLM land surface model.


2017 ◽  
Vol 18 (10) ◽  
pp. 2621-2645 ◽  
Author(s):  
Rolf H. Reichle ◽  
Gabrielle J. M. De Lannoy ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Andreas Colliander ◽  
...  

Abstract The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil moisture measurements for 43 (17) “reference pixels” at 9- and 36-km gridcell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root zone) soil moisture at 406 (311) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 m3 m−3 or better. The ubRMSE for L4_SM surface (root zone) soil moisture is 0.038 m3 m−3 (0.030 m3 m−3) at the 9-km scale and 0.035 m3 m−3 (0.026 m3 m−3) at the 36-km scale. The L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-only estimates, which do not benefit from the assimilation of SMAP brightness temperature observations and have a 9-km surface (root zone) ubRMSE of 0.042 m3 m−3 (0.032 m3 m−3). Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.


2020 ◽  
Author(s):  
Kumiko Tsujimoto ◽  
Tetsu Ohta

<p>The Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission – Water (GCOM-W) satellite provides global surface soil moisture as well as other water-related variables over the earth. With its brightness temperature observations at 10 and 36 GHz, the global soil moisture product is operationally created by the Japan Aerospace Exploration Agency (JAXA) based on the Koike’s algorithm (Koike et al., 2004) using the Polar Index (PI) and the Index of Soil Wetness (ISW). A land data assimilation system, LDAS-UT, has been also developed by Yang et al. (2007) to retrieve the optimized soil moisture estimates using both the brightness temperature observation and a land surface model.</p><p>In this study, we applied the distributed hydrological model, WEB-DHM (Wang et al., 2009), which incorporates the same land surface model with LDAS-UT, to a river basin in Cambodia and then calculated the brightness temperature at 6.9GHz from the simulated soil moisture distribution, using the same forward model as LDAS-UT. The temporal and spatial distribution of soil moisture was calibrated and validated against in-situ observation through river discharge using WEB-DHM, and the calculated brightness temperature was compared with the AMSR2 observation at 6.9 GHz. In addition to the dielectric mixing model by Dobson (Dobson et al., 1985) which is originally used in the LDAS-UT as well as in the JAXA's soil moisture retrieval algorithm, the performance of the Mironov model (Mironov et al., 2004) was examined as an alternative for the dielectric mixing model in the forward calculation and the calculated results from the two models were compared.</p><p>Along with the hydrological simulation, field measurements and laboratory experiments were conducted in Cambodia and Japan to evaluate the dielectric behavior of wet soils with different soil water content at a point scale. A ground microwave radiometer was temporally installed over a paddy field in Japan to measure the brightness temperature at 6.9GHz directly from the near surface. Soil samples were also taken from this field as well as several other locations in Japan and Cambodia to measure the permittivity with different soil moisture content with a network analyzer in the laboratory, in order to examine the dielectric behavior of wet soils for different soil textures. The measured results were then compared with the Dobson and Mironov models to evaluate their performance for Asian soils.</p>


Author(s):  
Rolf H. Reichle ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Wade T. Crow ◽  
Gabrielle J. M. De Lannoy ◽  
...  

AbstractSoil Moisture Active Passive (SMAP) mission L-band brightness temperature (Tb) observations are routinely assimilated into the Catchment land surface model to generate Level-4 Soil Moisture (L4_SM) estimates of global surface and root-zone soil moisture at 9-km, 3-hourly resolution with ~2.5-day latency. The Catchment model in the L4_SM algorithm is driven with ¼-degree, hourly surface meteorological forcing data from the Goddard Earth Observing System (GEOS). Outside of Africa and the high latitudes, GEOS precipitation is corrected using Climate Prediction Center Unified (CPCU) gauge-based, ½-degree, daily precipitation. L4_SM soil moisture was previously shown to improve over land model-only estimates that use CPCU precipitation but no Tb assimilation (CPCU_SIM). Here, we additionally examine the skill of model-only (CTRL) and Tb assimilation-only (SMAP_DA) estimates derived without CPCU precipitation. Soil moisture is assessed versus in situ measurements in well-instrumented regions and globally through the Instrumental Variable (IV) method using independent soil moisture retrievals from the Advanced Scatterometer. At the in situ locations, SMAP_DA and CPCU_SIM have comparable soil moisture skill improvements relative to CTRL for the unbiased root-mean-square error (surface and root-zone) and correlation metrics (root-zone only). In the global average, SMAP Tb assimilation increases the surface soil moisture anomaly correlation by 0.10-0.11 compared to an increase of 0.02-0.03 from the CPCU-based precipitation corrections. The contrast is particularly strong in central Australia, where CPCU is known to have errors and observation-minus-forecast Tb residuals are larger when CPCU precipitation is used. Validation versus streamflow measurements in the contiguous U.S. reveals that CPCU precipitation provides most of the skill gained in L4_SM runoff estimates over CTRL.


Sign in / Sign up

Export Citation Format

Share Document