Exploration of Synthetic Terrestrial Snow Mass Estimation via Assimilation of AMSR‐E Brightness Temperature Spectral Differences Using the Catchment Land Surface Model and Support Vector Machine Regression

2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Jing Wang ◽  
Barton A. Forman ◽  
Yuan Xue
2017 ◽  
Vol 21 (1) ◽  
pp. 37 ◽  
Author(s):  
Hua Deng ◽  
Yan Li ◽  
Yingchao Zhang ◽  
Hou Zhou ◽  
Peipei Cheng ◽  
...  

The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction. Predicción de vientos en una altiplanicie a la altura del eje con el esquema de la Universidad Yonsei/Modelo Superficie Terrestre Noah y la predicción estadísticaResumenLa estimación de la energía eólica está relacionada con la predicción en la variación de los vientos en pequeños intervalos de tiempo. Se seleccionaron cuatro torres eólicas ubicadas al interior de Mongolia para estudiar los recursos eólicos en la complejidad de un altiplano. Se utilizó la investigación climática a mesoscala y la combinación del esquema de la Universidad Yonsei con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), con resolución de 1km horizontal y 10 minutos, como el modelo numérico de predicción meteorológica (NWP, del inglés Numerical Weather Prediction). Se utilizaron tres técnicas estadísticas, persistencia, propagación hacia atrás en redes neuronales artificiales y máquina de vectores de soporte-mínimos cuadrados (LS-SVM, del inglés Least Square Support Vector Machine), para mejorar la predicción de la velocidad del viento en una turbina con la altura del eje a 70 metros y se complementó con los resultados del WRF/YSU/Noah. Las técnicas de predicción físico-estadísticas actuales tienen un buen desempeo en tres escalas de tiempo: (1) corto plazo, un día en adelante; (2) mediano plazo, de seis días en adelante; (3) cercano, una hora en adelante. Este método de predicción, que combina los resultados WRF/YSU/Noah con los métodos de persistencia y LS-SVM incrementa la precisión de predicción entre 26,3 y 49,4 por ciento, comparado con los resultados directos del modelo numérico WRF/YSU/Noah. Además, este método diferencia la variabilidad de las estaciones y el ciclo diurno en la velocidad y la dirección del viento.


2020 ◽  
Author(s):  
Kumiko Tsujimoto ◽  
Tetsu Ohta

<p>The Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission – Water (GCOM-W) satellite provides global surface soil moisture as well as other water-related variables over the earth. With its brightness temperature observations at 10 and 36 GHz, the global soil moisture product is operationally created by the Japan Aerospace Exploration Agency (JAXA) based on the Koike’s algorithm (Koike et al., 2004) using the Polar Index (PI) and the Index of Soil Wetness (ISW). A land data assimilation system, LDAS-UT, has been also developed by Yang et al. (2007) to retrieve the optimized soil moisture estimates using both the brightness temperature observation and a land surface model.</p><p>In this study, we applied the distributed hydrological model, WEB-DHM (Wang et al., 2009), which incorporates the same land surface model with LDAS-UT, to a river basin in Cambodia and then calculated the brightness temperature at 6.9GHz from the simulated soil moisture distribution, using the same forward model as LDAS-UT. The temporal and spatial distribution of soil moisture was calibrated and validated against in-situ observation through river discharge using WEB-DHM, and the calculated brightness temperature was compared with the AMSR2 observation at 6.9 GHz. In addition to the dielectric mixing model by Dobson (Dobson et al., 1985) which is originally used in the LDAS-UT as well as in the JAXA's soil moisture retrieval algorithm, the performance of the Mironov model (Mironov et al., 2004) was examined as an alternative for the dielectric mixing model in the forward calculation and the calculated results from the two models were compared.</p><p>Along with the hydrological simulation, field measurements and laboratory experiments were conducted in Cambodia and Japan to evaluate the dielectric behavior of wet soils with different soil water content at a point scale. A ground microwave radiometer was temporally installed over a paddy field in Japan to measure the brightness temperature at 6.9GHz directly from the near surface. Soil samples were also taken from this field as well as several other locations in Japan and Cambodia to measure the permittivity with different soil moisture content with a network analyzer in the laboratory, in order to examine the dielectric behavior of wet soils for different soil textures. The measured results were then compared with the Dobson and Mironov models to evaluate their performance for Asian soils.</p>


Author(s):  
Rolf H. Reichle ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Wade T. Crow ◽  
Gabrielle J. M. De Lannoy ◽  
...  

AbstractSoil Moisture Active Passive (SMAP) mission L-band brightness temperature (Tb) observations are routinely assimilated into the Catchment land surface model to generate Level-4 Soil Moisture (L4_SM) estimates of global surface and root-zone soil moisture at 9-km, 3-hourly resolution with ~2.5-day latency. The Catchment model in the L4_SM algorithm is driven with ¼-degree, hourly surface meteorological forcing data from the Goddard Earth Observing System (GEOS). Outside of Africa and the high latitudes, GEOS precipitation is corrected using Climate Prediction Center Unified (CPCU) gauge-based, ½-degree, daily precipitation. L4_SM soil moisture was previously shown to improve over land model-only estimates that use CPCU precipitation but no Tb assimilation (CPCU_SIM). Here, we additionally examine the skill of model-only (CTRL) and Tb assimilation-only (SMAP_DA) estimates derived without CPCU precipitation. Soil moisture is assessed versus in situ measurements in well-instrumented regions and globally through the Instrumental Variable (IV) method using independent soil moisture retrievals from the Advanced Scatterometer. At the in situ locations, SMAP_DA and CPCU_SIM have comparable soil moisture skill improvements relative to CTRL for the unbiased root-mean-square error (surface and root-zone) and correlation metrics (root-zone only). In the global average, SMAP Tb assimilation increases the surface soil moisture anomaly correlation by 0.10-0.11 compared to an increase of 0.02-0.03 from the CPCU-based precipitation corrections. The contrast is particularly strong in central Australia, where CPCU is known to have errors and observation-minus-forecast Tb residuals are larger when CPCU precipitation is used. Validation versus streamflow measurements in the contiguous U.S. reveals that CPCU precipitation provides most of the skill gained in L4_SM runoff estimates over CTRL.


2019 ◽  
Author(s):  
Renaud Hostache ◽  
Dominik Rains ◽  
Kaniska Mallick ◽  
Marco Chini ◽  
Ramona Pelich ◽  
...  

Abstract. The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help in reducing errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. In particular, we use as forcings the ERA-Interim public dataset and we couple the CMEM radiative transfer model with a hydro-meteorological model enabling therefore soil moisture and SMOS-like brightness temperature simulations. The hydro-meteorological model is configured using recent developments of the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application as well as to data availability and computational requirements. In this case, the model spatial resolution is adapted to the spatial grid of the satellite data, and the soil stratification is tailored to the satellite datasets to be assimilated and the forcing data. The hydrological model is first calibrated using a sample of SMOS brightness temperature observations (period 2010–2011). Next, SMOS-derived brightness temperature observations are sequentially assimilated into the coupled SUPERFLEX-CMEM model (period 2010–2015). For this experiment, a Local Ensemble Transform Kalman Filter is used and the meteorological forcings (ERA interim-based rainfall, air and soil temperature) are perturbed to generate a background ensemble. Each time a SMOS observation is available, the SUPERFLEX state variables related to the water content in the various soil layers are updated and the model simulations are resumed until the next SMOS observation becomes available. Our empirical results show that the SUPERFLEX-CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set up using the CLM land surface model. This shows that a simple model, when carefully calibrated, can yield performance level similar to that of a much more complex model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72. The assimilation of SMOS brightness temperature observation into the SUPERFLEX-CMEM modelling chain improves the correlation between predicted and in situ observed soil moisture by 0.03 on average showing improvements similar to those obtained using the CLM land surface model.


2005 ◽  
Vol 36 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Richard Essery ◽  
Eleanor Blyth ◽  
Richard Harding ◽  
Colin Lloyd

A land-surface model is used to simulate the albedo and mass of patchy snowcovers during radiation-driven melt for three years at a site in Svalbard. Performing single energy and mass balance calculations for the combined snow-covered and snow-free parts of the surface gives a faster decrease in albedo than observed because too much of the solar radiation absorbed by the composite surface is used to melt snow. Representing the snowcover separately allows the model to be calibrated to give a good match to the observed albedo for each of the years studied. A single set of model parameters cannot, however, give a good simulation for all of the years. The average snow mass and snowcover fraction measured on a grid of points can be simulated using either a distributed version of the model or a more efficient tiled version supplied with the observed relationship between snow mass and fractional coverage. Parameters obtained by optimising the snow mass simulations are more consistent from year to year than from the albedo simulations.


Sign in / Sign up

Export Citation Format

Share Document