scholarly journals Response of Banded Whistler Mode Waves to the Enhancement of Solar Wind Dynamic Pressure in the Inner Earth's Magnetosphere

2018 ◽  
Vol 45 (17) ◽  
pp. 8755-8763 ◽  
Author(s):  
Xiongdong Yu ◽  
Zhigang Yuan ◽  
Haimeng Li ◽  
Shiyong Huang ◽  
Dedong Wang ◽  
...  
2002 ◽  
Vol 107 (A8) ◽  
pp. SMP 4-1-SMP 4-6 ◽  
Author(s):  
D. L. Pasmanik ◽  
A. G. Demekhov ◽  
D. Nunn ◽  
V. Y. Trakhtengerts ◽  
M. J. Rycroft

2011 ◽  
Vol 29 (9) ◽  
pp. 1549-1569 ◽  
Author(s):  
M. Volwerk ◽  
J. Berchem ◽  
Y. V. Bogdanova ◽  
O. D. Constantinescu ◽  
M. W. Dunlop ◽  
...  

Abstract. A study of the interaction of solar wind magnetic field rotations with the Earth's magnetosphere is performed. For this event there is, for the first time, a full coverage over the dayside magnetosphere with multiple (multi)spacecraft missions from dawn to dusk, combined with ground magnetometers, radar and an auroral camera, this gives a unique coverage of the response of the Earth's magnetosphere. After a long period of southward IMF Bz and high dynamic pressure of the solar wind, the Earth's magnetosphere is eroded and compressed and reacts quickly to the turning of the magnetic field. We use data from the solar wind monitors ACE and Wind and from magnetospheric missions Cluster, THEMIS, DoubleStar and Geotail to investigate the behaviour of the magnetic rotations as they move through the bow shock and magnetosheath. The response of the magnetosphere is investigated through ground magnetometers and auroral keograms. It is found that the solar wind magnetic field drapes over the magnetopause, while still co-moving with the plasma flow at the flanks. The magnetopause reacts quickly to IMF Bz changes, setting up field aligned currents, poleward moving aurorae and strong ionospheric convection. Timing of the structures between the solar wind, magnetosheath and the ground shows that the advection time of the structures, using the solar wind velocity, correlates well with the timing differences between the spacecraft. The reaction time of the magnetopause and the ionospheric current systems to changes in the magnetosheath Bz seem to be almost immediate, allowing for the advection of the structure measured by the spacecraft closest to the magnetopause.


2021 ◽  
Author(s):  
Xiongjun Shang ◽  
Si Liu ◽  
Fuliang Xiao

<p>With observations of Van Allen Probes, we report a rare event of quasiperiodic whistler-mode waves in the dayside magnetosphere on 20 February 2014 as a response to the enhancement of solar wind dynamic pressure (P<sub>sw</sub>). The intensities of whistler-mode waves and anisotropy distributions of energetic electrons exhibit a ~5 mins quasi-periodic pattern, which is consistent with the period of synchronously observed compressional ULF waves. Based on the wave growth rates calculation, we suggest that the quasiperiodic whistler-mode waves could be generated by the energetic electrons with modulated anisotropy. The Poynting vectors of the whistler-mode waves alternate between northward and southward direction with a period twice the compressional ULF wave's near the equator, also exhibiting a clear modulated feature. This is probably because the intense ULF waves slightly altered the location of the local magnetic minimum, and thus modulated the relative direction of the wave source region respect to the spacecraft. Current results provide a direct evidence that the P<sub>sw</sub> play an important role in the generation and propagation of whistler-mode waves in the Earth's magnetosphere.</p>


2009 ◽  
Vol 49 (1) ◽  
pp. 24-29 ◽  
Author(s):  
A. G. Demekhov ◽  
V. Yu. Trakhtengerts ◽  
M. Rycroft ◽  
D. Nunn

Sign in / Sign up

Export Citation Format

Share Document