scholarly journals Combined Influence of the Arctic Oscillation and the Scandinavia Pattern on Spring Surface Air Temperature Variations Over Eurasia

2018 ◽  
Vol 123 (17) ◽  
pp. 9410-9429 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Linye Song ◽  
Wen Chen
2015 ◽  
Vol 28 (10) ◽  
pp. 4015-4026 ◽  
Author(s):  
Jinqing Zuo ◽  
Hong-Li Ren ◽  
Weijing Li

Abstract In the boreal winter, the Arctic Oscillation (AO) evidently acts to influence surface air temperature (SAT) anomalies in China. This study reveals a large intraseasonal variation in the relationship between the winter AO and southern China SAT anomalies. Specifically, a weak in-phase relationship occurs in December, but a significant out-of-phase relationship occurs in January and February. The authors show that the linkage between the AO and southern China SAT anomalies strongly depends on the AO-associated changes in the Middle East jet stream (MEJS) and that such an AO–MEJS relationship is characterized by a significant difference between early and middle-to-late winter. In middle-to-late winter, the Azores center of high pressure anomalies in the positive AO phase usually extends eastward and yields a significantly anomalous upper-level convergence over the Mediterranean Sea, which can excite a Rossby wave train spanning the Arabian Sea and intensify the MEJS. In early winter, however, the Azores center of the AO is apparently shifted westward and is mainly confined to the Atlantic Ocean; in this case, the associated change in the MEJS is relatively weak. Both observational diagnoses and experiments based on a linearized barotropic model suggest that the MEJS is closely linked to the AO only when the latter generates considerable upper-level convergence anomalies over the Mediterranean Sea. Therefore, the different impacts of the AO on the MEJS and the southern China SAT anomalies between early and middle-to-late winter are primarily attributed to the large intraseasonal zonal migrations of the Azores center of the AO.


2016 ◽  
Vol 73 (9) ◽  
pp. 3557-3571 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Hyun-Ju Lee ◽  
Dargan M. W. Frierson

Abstract Significant extratropical surface air temperature variations arise as a result of teleconnections induced by the Madden–Julian oscillation (MJO). The authors elucidate the detailed physical processes responsible for the development of temperature anomalies over Northern Hemisphere continents in response to MJO-induced heating using an intraseasonal perturbation thermodynamic equation and a wave activity tracing technique. A quantitative assessment demonstrates that surface air temperature variations are due to dynamical processes associated with a meridionally propagating Rossby wave train. Over East Asia, a local Hadley circulation causes adiabatic subsidence following MJO phase 3 to be a main driver for the warming. Meanwhile, for North America and eastern Europe, horizontal temperature advection by northerlies or southerlies is the key process for warming or cooling. A ray-tracing analysis illustrates that Rossby waves with zonal wavenumbers 2 and 3 influence the surface warming over North America and a faster wavenumber 4 affects surface temperature over eastern Europe. Although recent studies demonstrate the impacts of the Arctic Oscillation, Arctic sea ice melting, and Eurasian snow cover variations on extremely cold wintertime episodes over the NH extratropics, the weather and climate there are still considerably modulated through teleconnections induced by the tropical heat forcing. In addition, the authors show that the MJO is a real source of predictability for strong warm/cold events over these continents, suggesting a higher possibility of making a skillful forecast of temperature extremes with over 1 month of lead time.


2012 ◽  
Vol 117 (D19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hye-Young Son ◽  
Wonsun Park ◽  
Jee-Hoon Jeong ◽  
Sang-Wook Yeh ◽  
Baek-Min Kim ◽  
...  

2017 ◽  
Vol 38 (4) ◽  
pp. 1925-1937 ◽  
Author(s):  
Zhiyan Zuo ◽  
Song Yang ◽  
Kang Xu ◽  
Renhe Zhang ◽  
Qiong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document