scholarly journals Constraining a Historical Black Carbon Emission Inventory of the United States for 1960–2000

2019 ◽  
Vol 124 (7) ◽  
pp. 4004-4025 ◽  
Author(s):  
T. Sun ◽  
L. Liu ◽  
M. G. Flanner ◽  
T. W. Kirchstetter ◽  
C. Jiao ◽  
...  
2019 ◽  
Vol 11 (14) ◽  
pp. 3972 ◽  
Author(s):  
Lebunu Hewage Udara Willhelm Abeydeera ◽  
Jayantha Wadu Mesthrige ◽  
Tharushi Imalka Samarasinghalage

Greenhouse gases such as sulfur dioxide, nitrogen dioxide, and carbon dioxide have been recognized as the prime cause of global climate change, which has received significant global attention. Among these gases, carbon dioxide is considered as the prominent gas which motivated researchers to explore carbon reduction and mitigation strategies. Research work on this domain expands from carbon emission reporting to identifying and implementing carbon mitigation and reduction strategies. A comprehensive study to map global research on carbon emissions is, however, not available. Therefore, based on a scientometric analysis method, this study reviewed the global literature on carbon emissions. A total of 2945 bibliographic records, from 1981 to 2019, were extracted from the Web of Science core collection database and analyzed using techniques such as co-author and co-citation analysis. Findings revealed an increasing trend of publications in the carbon emission research domain, which has been more visible in the past few years, especially during 2016–2018. The most significant contribution to the domain was reported from China, the United States, and England. While most prolific authors and institutions of the domain were from China, authors and institutions from the United States reported the best connection links. It was revealed that evaluating greenhouse gas emissions and estimating the carbon footprint was popular among the researchers. Moreover, climate change and environmental effects of carbon emissions were also significant points of concern in carbon emission research. The key findings of this study will be beneficial for the policymakers, academics, and institutions to determine the future research directions as well as to identify with whom they can consult to assist in developing carbon emission control policies and future carbon reduction targets.


2003 ◽  
Vol 37 (18) ◽  
pp. 2539-2550 ◽  
Author(s):  
Marian Diaz Goebes ◽  
Ross Strader ◽  
Cliff Davidson

2015 ◽  
Vol 75 ◽  
pp. 2460-2465 ◽  
Author(s):  
Gu Xiaomeng ◽  
Li Wenchao ◽  
Jiang Shumin ◽  
Tian Lixin

2015 ◽  
Vol 15 (22) ◽  
pp. 33209-33251
Author(s):  
J. Feng ◽  
H. Liao ◽  
J. Li

Abstract. The Pacific-North America teleconnection (PNA) is the leading general circulation pattern in the troposphere over the region of North Pacific to North America during wintertime. This study examined the impacts of monthly variation of the PNA phase (positive or negative phase) on wintertime surface-layer aerosol concentrations in the US by analyzing observations during 1999–2013 from the Air Quality System of Environmental Protection Agency (EPA-AQS) and the model results for 1986–2006 from the global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). The composite analyses on the EPA-AQS observations over 1999–2003 showed that the average concentrations of PM2.5, sulfate, nitrate, ammonium, organic carbon, and black carbon aerosols over the US were higher in the PNA positive phases than in the PNA negative phases by 1.4 μg m−3 (12.7 %), 0.1 μg m−3 (6.4 %), 0.3 μg m−3 (39.1 %), 0.2 μg m−3 (22.8 %), 0.8 μg m−3 (21.3 %), and 0.2 μg m−3 (34.1 %), respectively. The simulated geographical patterns of the differences in concentrations of all aerosol species between the PNA positive and negative phases were similar to observations. Based on the GEOS-Chem simulation driven by the assimilated meteorological fields, the PNA-induced variation in planetary boundary layer height was found to be the most dominant meteorological factor that influenced the concentrations of PM2.5, sulfate, ammonium, organic carbon, and black carbon, and the PNA-induced variation in temperature was the most important parameter that influenced nitrate aerosol. Results from this work have important implications for understanding and prediction of air quality in the United States.


Sign in / Sign up

Export Citation Format

Share Document