scholarly journals Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in the North China Plain

2019 ◽  
Vol 6 (9) ◽  
pp. 1675-1693 ◽  
Author(s):  
Baozhu Ge ◽  
Xiaobin Xu ◽  
Zhiqiang Ma ◽  
Xiaole Pan ◽  
Zhe Wang ◽  
...  
2020 ◽  
Vol 257 ◽  
pp. 113621 ◽  
Author(s):  
Ye Kuang ◽  
Wanyun Xu ◽  
Weili Lin ◽  
Zhaoyang Meng ◽  
Huarong Zhao ◽  
...  

2020 ◽  
Author(s):  
Tao Ma ◽  
Hiroshi Furutani ◽  
Fengkui Duan ◽  
Takashi Kimoto ◽  
Jingkun Jiang ◽  
...  

Abstract. Severe winter hazes accompanied by high concentrations of fine particulate matter (PM2.5) occur frequently in the North China Plain and threaten public health. Organic matter (OM) and sulfate are recognized as major components of PM2.5, while atmospheric models often fail to predict their high concentrations during severe winter hazes due to incomplete understanding of secondary aerosol formation mechanisms. By using a novel combination of single particle mass spectrometer and optimized ion chromatography measurement, here we show that hydroxymethanesulfonate (HMS), formed by the reaction between formaldehyde (HCHO) and dissolved SO2 in aerosol water, is ubiquitous in Beijing winter. The HMS concentration and the molar ratio of HMS to sulfate increased with the deterioration of winter haze. High concentrations of precursors (SO2 and HCHO) coupled with low oxidant levels, low temperature, high relative humidity, and moderately acid pH facilitate the heterogeneous formation of HMS, which could account for up to 15 % of OM in winter haze and lead to 36 % overestimates of sulfate when using traditional ion chromatography measurements. Despite the clean air actions have substantially reduced SO2 emissions, HMS concentration and molar ratio of HMS to sulfate during severe winter hazes increased from 2015 to 2016 with the growth of HCHO concentration. Our findings illustrate the significant contribution of heterogeneous HMS chemistry to severe winter hazes in Beijing, which help to improve the prediction of OM and sulfate, and suggest that the reduction in HCHO can help to mitigate haze pollution.


2013 ◽  
Vol 13 (24) ◽  
pp. 12495-12506 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
J. Y. Sun ◽  
Z. J. Wu ◽  
D. L. Yue ◽  
...  

Abstract. Long-term measurements of particle number size distributions were carried out both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation (NPF) events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation events started was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 and 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that precursors were much more abundant in the polluted urban environment. Different from the observations in cleaner environments, the background conditions of the observed particle homogeneous nucleation events in the North China Plain could be characterized as the co-existing of a stronger source of precursor gases and a higher condensational sink of pre-existing aerosol particles. Secondary aerosol formation following nucleation events results in an increase of particle mass concentration, particle light scattering coefficient, and cloud condensation nuclei (CCN) number concentration, with consequences on visibility, radiative effects, and air quality. Typical regional NPF events with significant particle nucleation rates and subsequent particle growth over a sufficiently long time period at both sites were chosen to investigate the influence of NPF on the number concentration of "potential" CCN. As a result, the NPF and the subsequent condensable growth increased the CCN number concentration in the North China Plain by factors in the range from 5.6 to 8.7. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration was more than 50%, to which more attention should be drawn in regional and global climate modeling, especially in the polluted urban areas.


Sign in / Sign up

Export Citation Format

Share Document