A Multiscale Precipitation Forecasting Framework: Linking Teleconnections and Climate Dipoles to Seasonal and 24‐hr Extreme Rainfall Prediction

2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Yong‐Tak Kim ◽  
Byung‐Jin So ◽  
Hyun‐Han Kwon ◽  
Upmanu Lall
2021 ◽  
Author(s):  
Caroline Muller ◽  
Takayabu Yukari

<p><span>In this work, we review recent important advances in our understanding of the response of precipitation extremes to warming from theory and from idealized cloud-resolving simulations. A theoretical scaling for precipitation extremes has been proposed and refined in the past decades, allowing to address separately the contributions from the thermodynamics, the dynamics and the microphysics. Theoretical constraints, as well as remaining uncertainties, associated with each of these three contributions to precipitation extremes, will be discussed. Notably, although to leading order precipitation extremes seem to follow the thermodynamic theoretical expectation in idealized simulations, considerable uncertainty remains regarding the response of the dynamics and of the microphysics to warming, and considerable departure from this theoretical expectation is found in observations and in more realistic simulations. We also emphasize key outstanding questions, in particular the response of mesoscale convective organization to warming. Observations suggest that extreme rainfall often comes from organized system in very moist environments. Improved understanding of the physical processes behind convective organization is needed in order to achieve accurate extreme rainfall prediction in our current, and in a warming climate. </span></p>


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Author(s):  
Mohammad Shohidul Islam ◽  
Sultana Easmin Siddika ◽  
S M Injamamul Haque Masum

Rainfall forecasting is very challenging task for the meteorologists. Over the last few decades, several models have been utilized, attempting the successful analysing and forecasting of rainfall. Recorded climate data can play an important role in this regard. Long-time duration of recorded data can be able to provide better advancement of rainfall forecasting. This paper presents the utilization of statistical techniques, particularly linear regression method for modelling the rainfall prediction over Bangladesh. The rainfall data for a period of 11 years was obtained from Bangladesh Meteorological department (BMD), Dhaka i.e. that was surface-based rain gauge rainfall which was acquired from 08 weather stations over Bangladesh for the years of 2001-2011. The monthly and yearly rainfall was determined. In order to assess the accuracy of it some statistical parameters such as average, meridian, correlation coefficients and standard deviation were determined for all stations. The model prediction of rainfall was compared with true rainfall which was collected from rain gauge of different stations and it was found that the model rainfall prediction has given good results.


2020 ◽  
Vol 5 (10) ◽  
pp. 1281-1287
Author(s):  
F. B. Allechy ◽  
M. Youan Ta ◽  
V. H. N’Guessan Bi ◽  
F. A. Yapi ◽  
A. B. Koné ◽  
...  

The Lobo watershed located in the west-central part of Côte d'Ivoire is an area with high agricultural potential, influenced by climate variations and changes that reduce crop yields. The objective of this study is to analyse trends in ETCCDI extreme rainfall indices from rainfall data from 1984 to 2013 using ClimPACT2 software. This study shows that the trend of the indices: number of consecutive wet days (CWD), number of rainy days (R1mm) and the cumulative annual total rainfall (PRCPTOT) is decreasing. On the other hand, the number of consecutive dry days (CDD) is on the rise. In general, the whole basin has experienced a decrease in rainfall as well as wet sequences and an increase in dry sequences. These different trends observed in this study are more pronounced in the northern half of the watershed.


Sign in / Sign up

Export Citation Format

Share Document