convective organization
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 27)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hauke Schulz

Abstract. The C3ONTEXT (A Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT) dataset is presented as an overview about the meso-scale cloud patterns identified during the EUREC4A field campaign in early 2020. Based on infrared and visible satellite images, 50 researchers of the EUREC4A science team manually identified the four prevailing meso-scale patterns of shallow convection observed by Stevens et al. (2020). The common consensus on the observed meso-scale cloud patterns emerging from these manual classifications is presented. It builds the basis for future studies and reduces the subjective nature of these visually defined cloud patterns. This consensus makes it possible to contextualize the measurements of the EUREC4A field campaign and interpret them in the meso-scale setting. Commonly used approaches to capture the meso-scale patterns are computed for comparison and show good agreement with the manual classifications. All four patterns as classified by Stevens et al. (2020) were present in January–February 2020 although not all were dominant during the observing period of EUREC4A. The full dataset including postprocessed datasets for easier usage are openly available at the Zenodo archive at https://doi. org/10.5281/zenodo.5724585 (Schulz, 2021b).


Author(s):  
Yuqing Wang ◽  
Yuanlong Li ◽  
Jing Xu ◽  
Zhe-Min Tan ◽  
Yanluan Lin

AbstractIn this study, a simple energetically based dynamical system model of tropical cyclone (TC) intensification is modified to account for the observed dependence of the intensification rate (IR) on the storm intensity. According to the modified dynamical system model, the TC IR is controlled by the intensification potential (IP) and the weakening rate due to surface friction beneath the eyewall. The IP is determined primarily by the rate of change in the potential energy available for a TC to develop, which is a function of the thermodynamic conditions of the atmosphere and the underlying ocean, and the dynamical efficiency of the TC system. The latter depends strongly on the degree of convective organization within the eyewall and the inner-core inertial stability of the storm. At a relatively low TC intensity, the IP of the intensifying storm is larger than the frictional weakening rate, leading to an increase in the TC IR with TC intensity in this stage. As the storm reaches an intermediate intensity of 30-40 m s-1, the difference between IP and frictional weakening rate reaches its maximum, concurrent with the maximum IR. Later on, the IR decreases as the TC intensifies further because the frictional dissipation increases with TC intensity at a faster rate than the IP. Finally, the storm approaches its maximum potential intensity (MPI) and the IR becomes zero. The modified dynamical system model is validated with results from idealized simulations with an axisymmetric nonhydrostatic, cloud-resolving model.


2021 ◽  
Author(s):  
Nicolas Da Silva ◽  
Sara Shamekh ◽  
Caroline Muller ◽  
Benjamin Fildier

<p>Convective organisation has been associated with extreme precipitation in the tropics. Here we investigate the impact of convective self-aggregation on extreme rainfall rates. We find that convective self-aggregation significantly increases precipitation extremes, for 3-hourly accumulations but also for instantaneous rates (+ 30 %). We show that this latter enhanced instantaneous precipitation is mainly due to the local increase in relative humidity which drives larger accretion efficiency and lower re-evaporation and thus a higher precipitation efficiency.</p><p>An in-depth analysis based on an adapted scaling of precipitation extremes, reveals that the dynamic contribution decreases (- 25 %) while the thermodynamic is slightly enhanced (+ 5 %) with convective aggregation, leading to lower condensation rates (- 20 %). When the atmosphere is more organized into a moist convecting region, and a dry convection-free region, deep convective updrafts are surrounded by a warmer environment which reduces convective instability and thus the dynamic contribution. The moister boundary-layer explains the positive thermodynamic contribution. The microphysic contribution is increased by + 50 % with aggregation. The latter is partly due to reduced evaporation of rain falling through a moister near-cloud environment (+ 30 %), but also to the associated larger accretion efficiency (+ 20 %).</p><p>Thus, the change of convective organization regimes in a warming climate could lead to a much more different evolution of tropical precipitation extremes than expected from thermodynamical considerations. Improved fundamental understanding of convective organization and its sensitivity to warming, as well as its impact on precipitation extremes, is hence crucial to achieve accurate rainfall projections in a warming climate.</p>


2021 ◽  
Author(s):  
Benjamin Fildier ◽  
Caroline Muller ◽  
Ludovic Touze-Peiffer ◽  
Anna Lea Albright

<p>This study investigates the role of radiative processes in shaping the spatial distribution of shallow clouds, using in-situ measurements retrieved during the EUREC4A field campaign. Horizontal gradients in atmospheric radiative cooling above the boundary layer had been advanced as important drivers of shallow circulation and low-level winds, through their effect on surface pressure gradients. Modeling studies first recognized their importance in idealized simulations of deep convection in radiative-convective equilibrium, then found a weaker role for idealized cases of very shallow convection; but recent work using remote-sensing data argued for their importance in strengthening the circulation close to the margin between dry and moist regions, on synoptic scales, arguing for a possible significance for these radiative effects on observed cloud structures.</p><p>Here we investigate cases of intermediate scale, observed during the EUREC<sup>4</sup>A field campaign, where shallow convection extends vertically up to 4 km, and whose spatial organization can be described on mesoscales as “fish” or “flower” patterns. We perform careful radiative transfer calculations, using state-of-the-art spectroscopic data and over two thousand of dropsondes and radiosondes launched, to capture the fine details of radiative cooling profiles usually missed by satellite measurements. The large number of sondes allows us to sample radiative cooling information for the organization pattern of interest and analyze it in conjunction with the direct wind and humidity measurements. We also use geostationary estimates of precipitable water in clear-sky in order to cross-check the sonde data, and connect them to the organization pattern and to the position of the moist margin.</p><p>Our results target the following relationships previously identified in idealized simulations: (a) between horizontal gradients in moisture and in top-of-the-boundary-layer radiative cooling, (b) between these radiative cooling gradients and surface wind anomalies across the moist margin, and (c) between the strength of surface winds as a function of the distance from the moist margin. These results will allow us to test the importance of radiative transfer processes in a real case of shallow convective organization.</p>


2021 ◽  
Author(s):  
Caroline Muller ◽  
Takayabu Yukari

<p><span>In this work, we review recent important advances in our understanding of the response of precipitation extremes to warming from theory and from idealized cloud-resolving simulations. A theoretical scaling for precipitation extremes has been proposed and refined in the past decades, allowing to address separately the contributions from the thermodynamics, the dynamics and the microphysics. Theoretical constraints, as well as remaining uncertainties, associated with each of these three contributions to precipitation extremes, will be discussed. Notably, although to leading order precipitation extremes seem to follow the thermodynamic theoretical expectation in idealized simulations, considerable uncertainty remains regarding the response of the dynamics and of the microphysics to warming, and considerable departure from this theoretical expectation is found in observations and in more realistic simulations. We also emphasize key outstanding questions, in particular the response of mesoscale convective organization to warming. Observations suggest that extreme rainfall often comes from organized system in very moist environments. Improved understanding of the physical processes behind convective organization is needed in order to achieve accurate extreme rainfall prediction in our current, and in a warming climate. </span></p>


2021 ◽  
Vol 13 (2) ◽  
pp. 491-514 ◽  
Author(s):  
Claudia Christine Stephan ◽  
Sabrina Schnitt ◽  
Hauke Schulz ◽  
Hugo Bellenger ◽  
Simon P. de Szoeke ◽  
...  

Abstract. To advance the understanding of the interplay among clouds, convection, and circulation, and its role in climate change, the Elucidating the role of clouds–circulation coupling in climate campaign (EUREC4A) and Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC) collected measurements in the western tropical Atlantic during January and February 2020. Upper-air radiosondes were launched regularly (usually 4-hourly) from a network consisting of the Barbados Cloud Observatory (BCO) and four ships within 6–16∘ N, 51–60∘ W. From 8 January to 19 February, a total of 811 radiosondes measured wind, temperature, and relative humidity. In addition to the ascent, the descent was recorded for 82 % of the soundings. The soundings sampled changes in atmospheric pressure, winds, lifting condensation level, boundary layer depth, and vertical distribution of moisture associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. Raw (Level 0), quality-controlled 1 s (Level 1), and vertically gridded (Level 2) data in NetCDF format (Stephan et al., 2020) are available to the public at AERIS (https://doi.org/10.25326/137). The methods of data collection and post-processing for the radiosonde data set are described here.


Author(s):  
Tobias Becker ◽  
Cathy Hohenegger

AbstractIn this study, we estimate bulk entrainment rates for deep convection in convection-permitting simulations, conducted over the tropical Atlantic Ocean, encompassing parts of Africa and South America. We find that, even though entrainment rates decrease with height in all regions, they are, when averaging between 600 and 800 hPa, generally higher over land than over ocean. This is so because, over Amazonia, shallow convection causes an increase of bulk entrainment rates at lower levels and because, over West Africa, where entrainment rates are highest, convection is organized in squall lines. These squall lines are associated with strong mesoscale convergence, causing more intense updrafts and stronger turbulence generation in the vicinity of updrafts, increasing the entrainment rates. With the exception of West Africa, entrainment rates differ less across regions than across different environments within the regions. In contrast to what is usually assumed in convective parameterizations, entrainment rates increase with environmental humidity. Moreover, over ocean, they increase with static stability, while over land, they decrease. In addition, confirming the results of a recent idealized study, entrainment rates increase with convective aggregation, except in regions dominated by squall lines, like over West Africa.


Sign in / Sign up

Export Citation Format

Share Document