scholarly journals Response of precipitation extremes to warming: what have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned?

Author(s):  
Caroline Muller ◽  
Takayabu Yukari

<p><span>In this work, we review recent important advances in our understanding of the response of precipitation extremes to warming from theory and from idealized cloud-resolving simulations. A theoretical scaling for precipitation extremes has been proposed and refined in the past decades, allowing to address separately the contributions from the thermodynamics, the dynamics and the microphysics. Theoretical constraints, as well as remaining uncertainties, associated with each of these three contributions to precipitation extremes, will be discussed. Notably, although to leading order precipitation extremes seem to follow the thermodynamic theoretical expectation in idealized simulations, considerable uncertainty remains regarding the response of the dynamics and of the microphysics to warming, and considerable departure from this theoretical expectation is found in observations and in more realistic simulations. We also emphasize key outstanding questions, in particular the response of mesoscale convective organization to warming. Observations suggest that extreme rainfall often comes from organized system in very moist environments. Improved understanding of the physical processes behind convective organization is needed in order to achieve accurate extreme rainfall prediction in our current, and in a warming climate. </span></p>

2021 ◽  
Author(s):  
Nicolas Da Silva ◽  
Sara Shamekh ◽  
Caroline Muller ◽  
Benjamin Fildier

<p>Convective organisation has been associated with extreme precipitation in the tropics. Here we investigate the impact of convective self-aggregation on extreme rainfall rates. We find that convective self-aggregation significantly increases precipitation extremes, for 3-hourly accumulations but also for instantaneous rates (+ 30 %). We show that this latter enhanced instantaneous precipitation is mainly due to the local increase in relative humidity which drives larger accretion efficiency and lower re-evaporation and thus a higher precipitation efficiency.</p><p>An in-depth analysis based on an adapted scaling of precipitation extremes, reveals that the dynamic contribution decreases (- 25 %) while the thermodynamic is slightly enhanced (+ 5 %) with convective aggregation, leading to lower condensation rates (- 20 %). When the atmosphere is more organized into a moist convecting region, and a dry convection-free region, deep convective updrafts are surrounded by a warmer environment which reduces convective instability and thus the dynamic contribution. The moister boundary-layer explains the positive thermodynamic contribution. The microphysic contribution is increased by + 50 % with aggregation. The latter is partly due to reduced evaporation of rain falling through a moister near-cloud environment (+ 30 %), but also to the associated larger accretion efficiency (+ 20 %).</p><p>Thus, the change of convective organization regimes in a warming climate could lead to a much more different evolution of tropical precipitation extremes than expected from thermodynamical considerations. Improved fundamental understanding of convective organization and its sensitivity to warming, as well as its impact on precipitation extremes, is hence crucial to achieve accurate rainfall projections in a warming climate.</p>


Author(s):  
Saurav Raj ◽  
Roopam Shukla ◽  
Ricardo M. Trigo ◽  
Bruno Merz ◽  
Maheswaran Rathinasamy ◽  
...  

2012 ◽  
Vol 39 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
Chein-Jung Shiu ◽  
Shaw Chen Liu ◽  
Congbin Fu ◽  
Aiguo Dai ◽  
Ying Sun

2020 ◽  
Vol 96 ◽  
pp. 66-87
Author(s):  
Jennifer R. Marlon

AbstractWildfires are an integral part of most terrestrial ecosystems. Paleofire records composed of charcoal, soot, and other combustion products deposited in lake and marine sediments, soils, and ice provide a record of the varying importance of fire over time on every continent. This study reviews paleofire research to identify lessons about the nature of fire on Earth and how its past variability is relevant to modern environmental challenges. Four lessons are identified. First, fire is highly sensitive to climate change, and specifically to temperature changes. As long as there is abundant, dry fuel, we can expect that in a warming climate, fires will continue to grow unusually large, severe, and uncontrollable in fire-prone environments. Second, a better understanding of “slow” (interannual to multidecadal) socioecological processes is essential for predicting future wildfire and carbon emissions. Third, current patterns of burning, which are very low in some areas and very high in others—are often unprecedented in the context of the Holocene. Taken together, these insights point to a fourth lesson—that current changes in wildfire dynamics provide an opportunity for paleoecologists to engage the public and help them understand the potential consequences of anthropogenic climate change.


1994 ◽  
Vol 37 (2) ◽  
Author(s):  
I. Stanislawska

The paper presents two opposite approaches for single-station prediction and forecast. Both methods are based on different assumptions of physical processes in the ionosphere and need the different set of incoming data. Different heliogeophysical data, mainly f0F2 parameters from the past were analyzed for f0F2 obtaining for the requested period ahead. In the first method - the autocovariance prediction method - the time series of f0F2 from one station are used for daily forecast at that point. The second method may be used for obtaining f0F2 not only at the particular ionospheric station, but also at any point within the considered area.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Caroline Muller ◽  
Da Yang ◽  
George Craig ◽  
Timothy Cronin ◽  
Benjamin Fildier ◽  
...  

Idealized simulations of the tropical atmosphere have predicted that clouds can spontaneously clump together in space, despite perfectly homogeneous settings. This phenomenon has been called self-aggregation, and it results in a state where a moist cloudy region with intense deep convective storms is surrounded by extremely dry subsiding air devoid of deep clouds. We review here the main findings from theoretical work and idealized models of this phenomenon, highlighting the physical processes believed to play a key role in convective self-aggregation. We also review the growing literature on the importance and implications of this phenomenon for the tropical atmosphere, notably, for the hydrological cycle and for precipitation extremes, in our current and in a warming climate. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2014 ◽  
Vol 29 (3) ◽  
pp. 489-504 ◽  
Author(s):  
David R. Novak ◽  
Christopher Bailey ◽  
Keith F. Brill ◽  
Patrick Burke ◽  
Wallace A. Hogsett ◽  
...  

Abstract The role of the human forecaster in improving upon the accuracy of numerical weather prediction is explored using multiyear verification of human-generated short-range precipitation forecasts and medium-range maximum temperature forecasts from the Weather Prediction Center (WPC). Results show that human-generated forecasts improve over raw deterministic model guidance. Over the past two decades, WPC human forecasters achieved a 20%–40% improvement over the North American Mesoscale (NAM) model and the Global Forecast System (GFS) for the 1 in. (25.4 mm) (24 h)−1 threshold for day 1 precipitation forecasts, with a smaller, but statistically significant, 5%–15% improvement over the deterministic ECMWF model. Medium-range maximum temperature forecasts also exhibit statistically significant improvement over GFS model output statistics (MOS), and the improvement has been increasing over the past 5 yr. The quality added by humans for forecasts of high-impact events varies by element and forecast projection, with generally large improvements when the forecaster makes changes ≥8°F (4.4°C) to MOS temperatures. Human improvement over guidance for extreme rainfall events [3 in. (76.2 mm) (24 h)−1] is largest in the short-range forecast. However, human-generated forecasts failed to outperform the most skillful downscaled, bias-corrected ensemble guidance for precipitation and maximum temperature available near the same time as the human-modified forecasts. Thus, as additional downscaled and bias-corrected sensible weather element guidance becomes operationally available, and with the support of near-real-time verification, forecaster training, and tools to guide forecaster interventions, a key test is whether forecasters can learn to make statistically significant improvements over the most skillful of this guidance. Such a test can inform to what degree, and just how quickly, the role of the forecaster changes.


1976 ◽  
Vol 16 (74) ◽  
pp. 151-158 ◽  
Author(s):  
L. Lliboutry

AbstractIn a temperate glacier ice the water content results from the past history of the ice, and the temperature adjusts itself to the appropriate value. Results obtained by the Laboratoire de Glaciologie are summarized. Several facts seem to prove some migration of the liquid phase and a coalescence of liquid inclusions. The enthalpy flux is calculated, but it cannot be proved that a spontaneous gathering together of liquid inclusions could occur. The water-rich, small grain-size layers should come from the lowering of the viscosity when the water content increases, as discovered by Duval. The form of Weertman’s sliding law without cavitation can be derived from simple dimensional considerations. Numerically, it cannot account for high sliding velocities, for which subglacial cavitation must be introduced. The cavities are infilled with more stagnant regelation ice than water. Two subglacial hydraulic regimes are distinguished: autonomous and interconnected. The effect which the salt content may have on cavitation is estimated.


1985 ◽  
Vol 99 (10) ◽  
pp. 953-966 ◽  
Author(s):  
N. Black

SummaryOver the past one hundred years medical views on the cause of glue ear have frequently changed. The medical literature was reviewed to see if these changes reflected advances in the level of scientific support for different causes. This revealed that only a few of the many proposed causes command any scientific support. An explanation for the changing pattern of views on the aetiology of glue ear was therefore sought by considering secular changes in medical knowledge and belief in general. This suggested that the views held on the cause of glue ear at any given time are influenced and largely determined by the prevailing knowledge and beliefs of medicine as a whole. This phenomenon is not peculiar to glue ear—though conditions about which there is considerable uncertainty are probably more susceptible to such influences.


Sign in / Sign up

Export Citation Format

Share Document