Effects of Swell Waves on Atmospheric Boundary Layer Turbulence: A Low Wind Field Study

2019 ◽  
Vol 124 (8) ◽  
pp. 5671-5685 ◽  
Author(s):  
Zhongshui Zou ◽  
Jinbao Song ◽  
Peiliang Li ◽  
Jian Huang ◽  
Jun A. Zhang ◽  
...  
2007 ◽  
Vol 25 ◽  
pp. 31-34
Author(s):  
J.S. Lawrence ◽  
M.C.B. Ashley ◽  
C.S. Bonner ◽  
S. Bradley ◽  
D. Luong-Van ◽  
...  

Author(s):  
O. G. Chkhetiani ◽  
N. V. Vazaeva

A simple model for the development of submesoscale perturbations in the atmospheric boundary layer (ABL) is proposed. The growth of perturbations is associated with the shear algebraic instability of the wind velocity profile in the atmospheric boundary layer (ABL). For the scales of optimal perturbations (streaks) in the lower part of the ABL, estimates of their sizes were obtained about 100-200 m vertically and 300-600 m horizontally. Similar scales are noted for experimental data on the structure of the wind field in the lower part of the ABL, obtained in 2017, 2018 in the summer at the Tsimlyansk Scientific Station at the acoustic sounding of the atmosphere by the Doppler three-component minisodar of high resolution.


2010 ◽  
Vol 14 (1) ◽  
pp. 199-207 ◽  
Author(s):  
Zarko Stevanovic ◽  
Nikola Mirkov ◽  
Zana Stevanovic ◽  
Andrijana Stojanovic

Modeling atmosperic boundary layer with standard linear models does not sufficiently reproduce wind conditions in complex terrain, especially on leeward sides of terrain slopes. More complex models, based on Reynolds averaged Navier-Stokes equations and two-equation k-? turbulence models for neutral conditions in atmospheric boundary layer, written in general curvilinear non-orthogonal co-ordinate system, have been evaluated. In order to quantify the differences and level of accuracy of different turbulence models, investigation has been performed using standard k-? model without additional production terms and k-? turbulence models with modified set of model coefficients. The sets of full conservation equations are numerically solved by computational fluid dynamics technique. Numerical calculations of turbulence models are compared to the reference experimental data of Askervein hill measurements.


2020 ◽  
Author(s):  
Matthias Zeeman ◽  
Marwan Katurji ◽  
Tirtha Banerjee

<p>Do we get a better picture of the world around us if we simultaneously observe many aspects instead of a few? Dense sensing networks are an elaborate way to validate our representation of land surface boundary layer processes commonly derived from single point monitoring stations or a three-dimensional model world. More samples promise unique insights into interactions that occur at different scales, separated in space and time.</p><p>We present a combination of techniques that purvey a) observations of the temperature and wind field in high detail and b) the extraction of information about dynamic interactions near the surface. A field experiment was conducted in complex terrain, in which landscape features dramatically modulate local flow patterns and the atmospheric stability during summer days rapidly transitions on a diurnal scale and between locations. Wind and temperature were simultaneously observed using a network of Doppler lidar, sonic anemometer, fiber-optic temperature sensing (DTS) and thermal imaging velocimetry (TIV) instrumentation, centered around the TERENO/ICOS preAlpine grassland observatory station Fendt, Germany, during the ScaleX Campaigns (https://scalex.imk-ifu.kit.edu). Data analyses relied on signal decomposition and statistical clustering, aimed at the characterization of (non-)turbulent motions and their feedback on turbulent mixing near the surface. The combination of methods offered multiple levels of detail about the development and impact of organized structures in the atmospheric boundary layer.</p><p>The study shows that the exploration of novel micrometeorological and data sciences techniques helps advance our knowledge of fundamental aspects of atmospheric turbulence, and provides new avenues for theoretical and numerical studies of the atmospheric boundary layer.</p>


Sign in / Sign up

Export Citation Format

Share Document