scholarly journals The Dependence of Shallow Cumulus Macrophysical Properties on Large‐Scale Meteorology as Observed in ASTER Imagery

2019 ◽  
Vol 124 (21) ◽  
pp. 11477-11505 ◽  
Author(s):  
Theresa Mieslinger ◽  
Ákos Horváth ◽  
Stefan A. Buehler ◽  
Mirjana Sakradzija
2020 ◽  
Vol 77 (4) ◽  
pp. 1353-1369 ◽  
Author(s):  
Vishnu Nair ◽  
Thijs Heus ◽  
Maarten van Reeuwijk

Abstract The dynamics of a subsiding shell at the edges of actively growing shallow cumulus clouds with updrafts is analyzed using direct numerical simulation. The actively growing clouds have a fixed in-cloud buoyancy and velocity. Turbulent mixing and evaporative cooling at the cloud edges generate a subsiding shell that grows with time. A self-similar regime is observed for first- and second-order moments when normalized with respective maximum values. Internal scales derived from integral properties of the flow problem are identified. A self-similarity analysis using these scales reveals that contrary to classical self-similar flows, the turbulent kinetic energy budget terms and velocity moments scale according to the buoyancy and not with the mean velocity. The shell thickness is observed to increase linearly with time. The buoyancy scale remains time invariant and is set by the initial cloud–environment thermodynamics. The shell accelerates ballistically with a magnitude set by the saturation value of the buoyancy of the cloud–environment mixture. In this regime, the shell is buoyancy driven and independent of the in-cloud velocity. Relations are obtained for predicting the shell thickness and minimum velocities by linking the internal scales with external flow parameters. The values thus calculated are consistent with the thickness and velocities observed in typical shallow cumulus clouds. The entrainment coefficient is a function of the initial state of the cloud and the environment, and is shown to be on the same order of magnitude as fractional entrainment rates calculated for large-scale models.


2012 ◽  
Vol 69 (6) ◽  
pp. 1936-1956 ◽  
Author(s):  
Ji Nie ◽  
Zhiming Kuang

Abstract Responses of shallow cumuli to large-scale temperature/moisture perturbations are examined through diagnostics of large-eddy simulations (LESs) of the undisturbed Barbados Oceanographic and Meteorological Experiment (BOMEX) case and a stochastic parcel model. The perturbations are added instantaneously and allowed to evolve freely afterward. The parcel model reproduces most of the changes in the LES-simulated cloudy updraft statistics in response to the perturbations. Analyses of parcel histories show that a positive temperature perturbation forms a buoyancy barrier, which preferentially eliminates parcels that start with lower equivalent potential temperature or have experienced heavy entrainment. Besides the amount of entrainment, the height at which parcels entrain is also important in determining their fate. Parcels entraining at higher altitudes are more likely to overcome the buoyancy barrier than those entraining at lower altitudes. Stochastic entrainment is key for the parcel model to reproduce the LES results. Responses to environmental moisture perturbations are quite small compared to those to temperature perturbations because changing environmental moisture is ineffective in modifying buoyancy in the BOMEX shallow cumulus case. The second part of the paper further explores the feasibility of a stochastic parcel–based cumulus parameterization. Air parcels are released from the surface layer and temperature/moisture fluxes effected by the parcels are used to calculate heating/moistening tendencies due to both cumulus convection and boundary layer turbulence. Initial results show that this conceptually simple parameterization produces realistic convective tendencies and also reproduces the LES-simulated mean and variance of cloudy updraft properties, as well as the response of convection to temperature/moisture perturbations.


2020 ◽  
Author(s):  
George Spill ◽  
Philip Stier ◽  
Paul Field ◽  
Guy Dagan

<p>Shallow cumulus clouds interact with their environment in myriad significant ways, and yet their behavour is still poorly understood, and is responsible for much uncertainty in climate models. Improving our understanding of these clouds is therefore an important part of improving our understanding of the climate system as a whole.</p><p>Modelling studies of shallow convection have traditionally made use of highly idealised simulations using large-eddy models, which allow for high resolution, detailed simulations. However, this idealised nature, with periodic boundaries and constant forcing, and the quasi-equilibrium cloud fields produced, means that they do not capture the effect of transient forcing and conditions found in the real atmosphere, which contains shallow cumulus cloud fields unlikely to be in equilibrium.<span> </span></p><p>Simulations with more realistic nested domains and forcings have previously been shown to have significant persistent responses differently to aerosol perturbations, in contrast to many large eddy simulations in which perturbed runs tend to reach a similar quasi-equilibrium.<span> </span></p><p>Here, we further this investigation by using a single model to present a comparison of familiar idealised simulations of trade wind cumuli in periodic domains, and simulations with a nested domain, whose boundary conditions are provided by a global driving model, able to simulate transient synoptic conditions.<span> </span></p><p>The simulations are carried out using the Met Office Unified Model (UM), and are based on a case study from the Rain In Cumulus over the Ocean (RICO) field campaign. Large domains of 500km are chosen in order to capture large scale cloud field behaviour. A double-moment interactive microphysics scheme is used, along with prescribed aerosol profiles based on RICO observations, which are then perturbed.</p><p>We find that the choice between realistic nested domains with transient forcing and idealised periodic domains with constant forcing does indeed affect the nature of the response to aerosol perturbations, with the realistic simulations displaying much larger persistent changes in domain mean fields such as liquid water path and precipitation rate.<span> </span></p>


2017 ◽  
Vol 38 (6) ◽  
pp. 1257-1282 ◽  
Author(s):  
Louise Nuijens ◽  
Kerry Emanuel ◽  
Hirohiko Masunaga ◽  
Tristan L’Ecuyer

2010 ◽  
Vol 10 (8) ◽  
pp. 4047-4063 ◽  
Author(s):  
R. C. George ◽  
R. Wood

Abstract. Subseasonal variability of cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations and NCEP reanalysis data. A once-daily albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration) and macrophysics (liquid water path). Subseasonal albedo variability is dominated by the contribution of low cloud fraction variability, except within 10–15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly and positively to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. Droplet concentration variability contributes only weakly to the subseasonal variability of albedo, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. The dominant large scale meteorological variability is associated with the subtropical high pressure system. Two indices representing changes in the subtropical high strength and extent explain 80–90% of this variability, and significantly modulate the cloud microphysical, macrophysical, and radiative cloud properties. Variations in droplet concentration of up to 50% of the mean are associated with the meteorological driving. We hypothesize that these fluctuations in droplet concentration are a result of the large scale meteorology and their correlation with cloud macrophysical properties should not be used as evidence of aerosol effects. Mechanisms by which large scale meteorology affects cloud properties are explored. Our results support existing hypotheses linking cloud cover variability to changes in cold advection, subsidence, and lower tropospheric stability. Within 10° of the coast interactions between variability in the surface high pressure system and the orography appear to modulate both cloud macrophysical properties and aerosol transport through suppression of the marine boundary layer depth near the coast. This suggests one possible way in which cloud macrophysical properties and droplet concentration may be correlated independently of the second aerosol indirect effect. The results provide variability constraints for models that strive to represent both meteorological and aerosol impacts on stratocumulus clouds.


2019 ◽  
Vol 76 (3) ◽  
pp. 729-747 ◽  
Author(s):  
Thirza W. van Laar ◽  
Vera Schemann ◽  
Roel A. J. Neggers

Abstract The diurnal dependence of cumulus cloud size distributions over land is investigated by means of an ensemble of large-eddy simulations (LESs). A total of 146 days of transient continental shallow cumulus are selected and simulated, reflecting a low midday maximum of total cloud cover, weak synoptic forcing, and the absence of strong surface precipitation. The LESs are semi-idealized, forced by large-scale model output but using an interactive surface. This multitude of cases covers a large parameter space of environmental conditions, which is necessary for identifying any diurnal dependencies in cloud size distributions. A power-law exponential function is found to describe the shape of the cloud size distributions for these days well, with the exponential component capturing the departure from power-law scaling at the larger cloud sizes. To assess what controls the largest cloud size in the distribution, the correlation coefficients between the maximum cloud size and various candidate variables reflecting the boundary layer state are computed. The strongest correlation is found between total cloud cover and maximum cloud size. Studying the size density of the cloud area revealed that larger clouds contribute most to a larger total cloud cover, and not the smaller ones. Besides cloud cover, cloud-base and cloud-top height are also found to weakly correlate with the maximum cloud size, suggesting that the classic idea of deeper boundary layers accommodating larger convective thermals still holds for shallow cumulus. Sensitivity tests reveal that the results are only minimally affected by the representation of microphysics and the output resolution.


2020 ◽  
Author(s):  
Geet George ◽  
Bjorn Stevens ◽  
Sandrine Bony ◽  
Marcus Klingebiel

<p>This study uses measurements from the <em>Elucidating the Role of Clouds-Circulation Coupling in Climate</em>, EUREC<sup>4</sup>A and the second <em>Next-Generation Aircraft Remote Sensing for Validation</em>, NARVAL2 campaigns to investigate the influence of large-scale environmental conditions on cloudiness. For the first time, these campaigns provide divergence measurements, making it possible to explore the impact of large-scale vertical motions on clouds. We attempt to explain the cloudiness through the varying thermodynamics and dynamics in the different environments.  For most of the NARVAL2 case-studies, cloudiness is poorly related to thermodynamical factors such as sea-surface temperature and lower tropospheric stability. Factors such as integrated water vapour and pressure velocity (ω) at 500 hPa and 700 hPa can be used to distinguish between actively convecting and suppressed regions, but they are not useful in determining the variation in cloudiness among suppressed cases. We find that ω in the boundary layer (up to ∼2 km) has a more direct control on the low-level cloudiness in these regions, than that in the upper layers. We use a simplistic method to show that ω at the lifting condensation level can be used to determine the cloud cover of shallow cumulus clouds. Thus, we argue that cloud schemes in models should not rely only on thermodynamical information, but also on dynamical predictors.</p>


2019 ◽  
Vol 76 (8) ◽  
pp. 2539-2558 ◽  
Author(s):  
Youtong Zheng

Abstract Zheng and Rosenfeld found linear relationships between the convective updrafts and cloud-base height zb using ground-based observations over both land and ocean. The empirical relationships allow for a novel satellite remote sensing technique of inferring the cloud-base updrafts and cloud condensation nuclei concentration, both of which are important for understanding aerosol–cloud–climate interactions but have been notoriously difficult to retrieve from space. In Part I of a two-part study, a theoretical framework is established for understanding this empirical relationship over the ocean. Part II deals with continental cumulus clouds. Using the bulk concept of mixed-layer (ML) model for shallow cumulus, I found that this relationship arises from the conservation law of energetics that requires the radiative flux divergence of an ML to balance surface buoyancy flux. Given a certain ML radiative cooling rate per unit mass Q, a deeper ML (higher zb) undergoes more radiative cooling and requires stronger surface buoyancy flux to balance it, leading to stronger updrafts. The rate with which the updrafts vary with zb is modulated by Q. The cooling rate Q manifests strong resilience to external large-scale forcing that spans a wide range of climatology, allowing the slope of the updrafts–zb relationship to remain nearly invariant. This causes the relationship to manifest linearity. The physical mechanism underlying the resilience of Q to large-scale forcing, such as free-tropospheric moisture and sea surface temperature, is investigated through the lens of the radiative transfer theory (two-stream Schwarzschild equations) and an ML model for shallow cumulus.


Sign in / Sign up

Export Citation Format

Share Document