scholarly journals Toward Improved Accuracy of Remote Sensing Approaches for Quantifying Suspended Sediment: Implications for Suspended‐Sediment Monitoring

Author(s):  
E. N. Dethier ◽  
C. E. Renshaw ◽  
F. J. Magilligan
2015 ◽  
Vol 7 (5) ◽  
pp. 5373-5397 ◽  
Author(s):  
Jin-Ling Kong ◽  
Xiao-Ming Sun ◽  
David Wong ◽  
Yan Chen ◽  
Jing Yang ◽  
...  

1989 ◽  
Vol 28 ◽  
pp. 33-44 ◽  
Author(s):  
John R. Jensen ◽  
Björn Kjerfve ◽  
Elijah W. Ramsey ◽  
Karen E. Magill ◽  
Carmen Medeiros ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 873 ◽  
Author(s):  
Flóra Pomázi ◽  
Sándor Baranya

The monitoring of fluvial suspended sediment transport plays an important role in the assessment of morphological processes, river habitats, or many social activities associated with river management. However, establishing and operating a well-functioning sediment monitoring system requires the involvement of advanced indirect methods. This study investigates the advantages and limitations of optical and acoustic devices, to quantify the uncertainties and provide a comprehensive comparative assessment of the investigated indirect methods. The novelty of this study, compared to previous ones, is that four different indirect techniques are parallel tested, i.e., the laser diffraction based LISST-Portable|XR, an infrared based optical instrument, the VELP TB1 turbidimeter, the acoustic based LISST-ABS (Acoustical Backscatter Sensor) sensor, and a 1200 kHz Teledyne RD Instruments Acoustic Doppler Current Profiler (ADCP). The calibration of all the indirect methods was performed based on more than 1000 samples taken from the Hungarian section of the Danube River within a wide suspended sediment concentration range. Implementing a comparative assessment of the different sediment analysis methods, a qualitative and quantitative characterisation of the applicability is provided. Furthermore, a proposal for an optimised sediment monitoring methodology is also suggested.


Sign in / Sign up

Export Citation Format

Share Document