scholarly journals Tuning the MPI‐ESM1.2 Global Climate Model to Improve the Match With Instrumental Record Warming by Lowering Its Climate Sensitivity

Author(s):  
Thorsten Mauritsen ◽  
Erich Roeckner
2014 ◽  
Vol 27 (5) ◽  
pp. 1845-1862 ◽  
Author(s):  
Ming Zhao

Abstract This study explores connections between process-level modeling of convection and global climate model (GCM) simulated clouds and cloud feedback to global warming through a set of perturbed-physics and perturbed sea surface temperature experiments. A bulk diagnostic approach is constructed, and a set of variables is derived and demonstrated to be useful in understanding the simulated relationship. In particular, a novel bulk quantity, the convective precipitation efficiency or equivalently the convective detrainment efficiency, is proposed as a simple measure of the aggregated properties of parameterized convection important to the GCM simulated clouds. As the convective precipitation efficiency increases in the perturbed-physics experiments, both liquid and ice water path decrease, with low and middle cloud fractions diminishing at a faster rate than high cloud fractions. This asymmetry results in a large sensitivity of top-of-atmosphere net cloud radiative forcing to changes in convective precipitation efficiency in this limited set of models. For global warming experiments, intermodel variations in the response of cloud condensate, low cloud fraction, and total cloud radiative forcing are well explained by model variations in response to total precipitation (or detrainment) efficiency. Despite significant variability, all of the perturbed-physics models produce a sizable increase in precipitation efficiency to warming. A substantial fraction of the increase is due to its convective component, which depends on the parameterization of cumulus mixing and convective microphysical processes. The increase in convective precipitation efficiency and associated change in convective cloud height distribution owing to warming explains the increased cloud feedback and climate sensitivity in recently developed Geophysical Fluid Dynamics Laboratory GCMs. The results imply that a cumulus scheme using fractional removal of condensate for precipitation and inverse calculation of the entrainment rate tends to produce a lower climate sensitivity than a scheme using threshold removal for precipitation and the entrainment rate formulated inversely dependent on convective depth.


2016 ◽  
Vol 29 (2) ◽  
pp. 543-560 ◽  
Author(s):  
Ming Zhao ◽  
J.-C. Golaz ◽  
I. M. Held ◽  
V. Ramaswamy ◽  
S.-J. Lin ◽  
...  

Abstract Uncertainty in equilibrium climate sensitivity impedes accurate climate projections. While the intermodel spread is known to arise primarily from differences in cloud feedback, the exact processes responsible for the spread remain unclear. To help identify some key sources of uncertainty, the authors use a developmental version of the next-generation Geophysical Fluid Dynamics Laboratory global climate model (GCM) to construct a tightly controlled set of GCMs where only the formulation of convective precipitation is changed. The different models provide simulation of present-day climatology of comparable quality compared to the model ensemble from phase 5 of CMIP (CMIP5). The authors demonstrate that model estimates of climate sensitivity can be strongly affected by the manner through which cumulus cloud condensate is converted into precipitation in a model’s convection parameterization, processes that are only crudely accounted for in GCMs. In particular, two commonly used methods for converting cumulus condensate into precipitation can lead to drastically different climate sensitivity, as estimated here with an atmosphere–land model by increasing sea surface temperatures uniformly and examining the response in the top-of-atmosphere energy balance. The effect can be quantified through a bulk convective detrainment efficiency, which measures the ability of cumulus convection to generate condensate per unit precipitation. The model differences, dominated by shortwave feedbacks, come from broad regimes ranging from large-scale ascent to subsidence regions. Given current uncertainties in representing convective precipitation microphysics and the current inability to find a clear observational constraint that favors one version of the authors’ model over the others, the implications of this ability to engineer climate sensitivity need to be considered when estimating the uncertainty in climate projections.


1996 ◽  
Author(s):  
Larry Bergman ◽  
J. Gary ◽  
Burt Edelson ◽  
Neil Helm ◽  
Judith Cohen ◽  
...  

2010 ◽  
Vol 10 (14) ◽  
pp. 6527-6536 ◽  
Author(s):  
M. A. Brunke ◽  
S. P. de Szoeke ◽  
P. Zuidema ◽  
X. Zeng

Abstract. Here, liquid water path (LWP), cloud fraction, cloud top height, and cloud base height retrieved by a suite of A-train satellite instruments (the CPR aboard CloudSat, CALIOP aboard CALIPSO, and MODIS aboard Aqua) are compared to ship observations from research cruises made in 2001 and 2003–2007 into the stratus/stratocumulus deck over the southeast Pacific Ocean. It is found that CloudSat radar-only LWP is generally too high over this region and the CloudSat/CALIPSO cloud bases are too low. This results in a relationship (LWP~h9) between CloudSat LWP and CALIPSO cloud thickness (h) that is very different from the adiabatic relationship (LWP~h2) from in situ observations. Such biases can be reduced if LWPs suspected to be contaminated by precipitation are eliminated, as determined by the maximum radar reflectivity Zmax>−15 dBZ in the apparent lower half of the cloud, and if cloud bases are determined based upon the adiabatically-determined cloud thickness (h~LWP1/2). Furthermore, comparing results from a global model (CAM3.1) to ship observations reveals that, while the simulated LWP is quite reasonable, the model cloud is too thick and too low, allowing the model to have LWPs that are almost independent of h. This model can also obtain a reasonable diurnal cycle in LWP and cloud fraction at a location roughly in the centre of this region (20° S, 85° W) but has an opposite diurnal cycle to those observed aboard ship at a location closer to the coast (20° S, 75° W). The diurnal cycle at the latter location is slightly improved in the newest version of the model (CAM4). However, the simulated clouds remain too thick and too low, as cloud bases are usually at or near the surface.


2009 ◽  
Vol 29 (1) ◽  
pp. 94-101 ◽  
Author(s):  
Heiko Goelzer ◽  
Anders Levermann ◽  
Stefan Rahmstorf

2012 ◽  
Vol 43 (3) ◽  
pp. 215-230 ◽  
Author(s):  
Manish Kumar Goyal ◽  
C. S. P. Ojha

We investigate the performance of existing state-of-the-art rule induction and tree algorithms, namely Single Conjunctive Rule Learner, Decision Table, M5 Model Tree, Decision Stump and REPTree. Downscaling models are developed using these algorithms to obtain projections of mean monthly precipitation to lake-basin scale in an arid region in India. The effectiveness of these algorithms is evaluated through application to downscale the predictand for the Lake Pichola region in Rajasthan state in India, which is considered to be a climatically sensitive region. The predictor variables are extracted from (1) the National Centre for Environmental Prediction (NCEP) reanalysis dataset for the period 1948–2000 and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 2001–2100. M5 Model Tree algorithm was found to yield better performance among all other learning techniques explored in the present study. The precipitation is projected to increase in future for A2 and A1B scenarios, whereas it is least for B1 and COMMIT scenarios using predictors.


Sign in / Sign up

Export Citation Format

Share Document