scholarly journals Projected Changes in Compound Flood Hazard From Riverine and Coastal Floods in Northwestern Europe

2020 ◽  
Vol 8 (11) ◽  
Author(s):  
Poulomi Ganguli ◽  
Dominik Paprotny ◽  
Mehedi Hasan ◽  
Andreas Güntner ◽  
Bruno Merz
Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 63 ◽  
Author(s):  
Ayushi Gaur ◽  
Abhishek Gaur ◽  
Dai Yamazaki ◽  
Slobodan P. Simonovic

This study discusses the flooding related consequences of climate change on most populous Canadian cities and flow regulation infrastructure (FRI). The discussion is based on the aggregated results of historical and projected future flooding frequencies and flood timing as generated by Canada-wide hydrodynamic modelling in a previous study. Impact assessment on 100 most populous Canadian cities indicate that future flooding frequencies in some of the most populous cities such as Toronto and Montreal can be expected to increase from 100 (250) years to 15 (22) years by the end of the 21st century making these cities highest at risk to projected changes in flooding frequencies as a consequence of climate change. Overall 40–60% of the analyzed cities are found to be associated with future increases in flooding frequencies and associated increases in flood hazard and flood risk. The flooding related impacts of climate change on 1072 FRIs located across Canada are assessed both in terms of projected changes in future flooding frequencies and changes in flood timings. Results suggest that 40–50% of the FRIs especially those located in southern Ontario, western coastal regions, and northern regions of Canada can be expected to experience future increases in flooding frequencies. FRIs located in many of these regions are also projected to experience future changes in flood timing underlining that operating rules for those FRIs may need to be reassessed to make them resilient to changing climate.


2015 ◽  
Vol 19 (5) ◽  
pp. 2247-2260 ◽  
Author(s):  
L. Alfieri ◽  
P. Burek ◽  
L. Feyen ◽  
G. Forzieri

Abstract. EURO-CORDEX (Coordinated Downscaling Experiment over Europe), a new generation of downscaled climate projections, has become available for climate change impact studies in Europe. New opportunities arise in the investigation of potential effects of a warmer world on meteorological and hydrological extremes at regional scales. In this work, an ensemble of EURO-CORDEX RCP8.5 scenarios is used to drive a distributed hydrological model and assess the projected changes in flood hazard in Europe through the current century. Changes in magnitude and frequency of extreme streamflow events are investigated by statistical distribution fitting and peak over threshold analysis. A consistent method is proposed to evaluate the agreement of ensemble projections. Results indicate that the change in frequency of discharge extremes is likely to have a larger impact on the overall flood hazard as compared to the change in their magnitude. On average, in Europe, flood peaks with return periods above 100 years are projected to double in frequency within 3 decades.


2020 ◽  
Author(s):  
Hadush Meresa ◽  
Conor Murphy ◽  
Rowan Fealy

<p>In the coming decades, climate change will likely become a complex issue affecting hydrological regimes and flood hazard conditions. According to the IPCC reports, significant changes in atmospheric temperature, precipitation, humidity, and circulation are expected which may lead to extreme events including flood, droughts, heatwaves, heavy precipitation, and more intense cyclones. Although the effects of climate change on flood hazard indices is subject to large uncertainty, the evaluation of high-flows plays a crucial role in flood risk planning and extreme event management. With the advent of the Coupled Model Intercomparison Project Phase 6 (CMIP6), flood managers are interested to know how changes in catchment flood risk are expected to alter relative to previous assessments. Here we examine catchment based projected changes in flood quantiles and extreme high flow events for Irish catchments, selected to be representative of the range of hydrological conditions on the island. Conceptual hydrological models, together with different downscaling techniques are used to examine changes in flood risk projected from the CMIP6 archive for mid and end of century. Results will inform the range of plausible changes expected for policy relevant flood indices, the sensitivity of findings to use of different climate model ensembles and inform the tailoring of adaptation plans to account for the new generation of climate model outputs.</p>


Author(s):  
J. W. Cabrera Cabrera ◽  
L. F. Castillo Navarro

Abstract. Possible effects of climate change on floods magnitude and effects are discussed in this document based on existing data and projected changes in precipitation until 2099. This methodology is applied to Matucana Village, which suffers the effects of floods and debris flows. First, historical peak precipitation, fitted to Gumbel distribution, was used, After that, percentage projected changes of precipitation were used to obtain the new mean precipitation to each period 2010–2039, 2040–2069 and 2070–2099; these mean precipitations define a new Gumbel distribution for every time period. Then, projected maximal precipitations to 100 years of return period are estimated and the corresponding peak flow hydrographs were built. Finally, hazard maps are plotted. This application is possible because Matucana is located in a climatologically homogeneous basin. The final results suggest an important increase in magnitude and affected area by floods in the next 90 years under the A1FI emission scenario.


2017 ◽  
Vol 49 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Zbigniew W. Kundzewicz ◽  
Iwona Pińskwar ◽  
G. Robert Brakenridge

Abstract Despite costly flood risk reduction efforts, material damage and death toll caused by river floods continue to be high in Europe. In the present review paper, after outlining a process-based perspective, we examine observed and projected changes in flood hazard. Spatial and temporal variability of large floods is analyzed, based on a time series of flood information, collected by the Dartmouth Flood Observatory in 1985–2016. Model-based projections of future flood hazard are critically reviewed. It is difficult to disentangle the climatic change component from strong natural variability and direct human impacts. The climate change impact on flood hazard is complex and depends on the river flood generation mechanism. It has not been possible to detect ubiquitous changes in flood characteristics in observation records in Europe, so far. However, we found an increasing tendency in the number of floods with large magnitude and severity, even if year-to-year variability is strong. There is a considerable spread of river flood hazard projections in Europe among studies, carried out under different assumptions. Therefore, caution must be exerted by practitioners in charge of climate change adaptation, flood risk reduction, risk insurance, and water resources management when accommodating information on flood hazard projections, under considerable uncertainty.


2015 ◽  
Vol 12 (1) ◽  
pp. 1119-1152 ◽  
Author(s):  
L. Alfieri ◽  
P. Burek ◽  
L. Feyen ◽  
G. Forzieri

Abstract. EURO-CORDEX, a new generation of downscaled climate projections, has become available for climate change impact studies in Europe. New opportunities arise in the investigation of potential effects of a warmer world on meteorological and hydrological extremes at regional scales. In this work, an ensemble of EURO-CORDEX RCP 8.5 scenarios is used to drive a distributed hydrological model and assess the projected changes in flood hazard in Europe through the current century. Changes in magnitude and frequency of extreme streamflow events are investigated by statistical distribution fitting and peak over threshold analysis. A consistent method is proposed to evaluate the agreement of ensemble projections. Results indicate that the change in frequency of discharge extremes is likely to have a larger impact on the overall flood hazard as compared to the change in their magnitude. On average in Europe, flood peaks with return period above 100 years are projected to double in frequency within three decades.


2020 ◽  
Vol 5 (1) ◽  
pp. 414
Author(s):  
Amsar Yunan

Maps or remote sensing can be interpreted as the process of reading using various sensors where data collected remotely can be analyzed to obtain information about the object, area or phenomenon. In this study, the author develops a flood disaster mapping information system applying overlays with scoring between the parameters. The determinant factors to provide flood hazard levels includes rainfall factors in the dasarian unit, land-use factors and land-use arbitrary factors. Of all these parameters, a scoring process will be carried out by assigning weights and values according to their respective classifications, then an overlay process will be performed using ArcGIS software. The author conducted this study in Nagan Raya Regency since this area experiences flooding annually.  Framing a thematic map of flood-prone areas in Nagan Raya Regency was designed using the flood hazard method. Spatial data that has been presented in the form of thematic maps as parameters are land use maps, landform maps, and dasarian rainfall maps (per 10 daily). The design of thematic maps that are prone to flooding is done by overlapping (overlay process). In contrast, the determination of the classification is done by adding scores to each parameter, with low, medium and high hazard levels. Parameter analysis shows the level of flood vulnerability in Nagan Raya Regency of each district, namely Beutong: high 0.21%, medium 13.68%, low 86.12%. Seunagan District: high 51.17%, medium 48.83%, low 0%. Seunagan Timur District: high 10.07%, medium 46.18%, low 43.75%. Kuala Subdistrict: high 29.66%, medium 68.99%, low 1.35%. Darul Makmur District: high 8.57%, medium 63.37%, low 28.06%. From the overall results of the study, it can be concluded that the danger of flooding in Nagan Raya Regency with a level of vulnerability: high 9.92%, moderate 42.65% and low 47.43%.


Sign in / Sign up

Export Citation Format

Share Document