scholarly journals Southern California’s Crustal Motion Tells of Earthquake Hazards

Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Aaron Sidder

Precise measurements of the Earth’s vertical surface motion help to elucidate the hazards of faults in an earthquake-prone region.

2018 ◽  
Vol 156 (2) ◽  
pp. 308-319 ◽  
Author(s):  
ANKE M. FRIEDRICH

AbstractDynamic topography is a well-established consequence of global geodynamic models of mantle convection with horizontal dimensions of >1000 km and amplitudes up to 2 km. Such physical models guide the interpretation of geological records on equal dimensions. Continent-scale geological maps therefore serve as reference frames of choice to visualize erosion/non-deposition as a proxy for long-wavelength, low-amplitude vertical surface motion. At a resolution of systems or series, such maps display conformable and unconformable time boundaries traceable over hundreds to thousands of kilometres. Unconformable contact surfaces define the shape and size of time gap (hiatus) in millions of years based on the duration of time represented by the missing systems or series. Hiatus for a single system or series base datum diminishes laterally to locations (anchor points) where it is conformable at the mapped resolution; it is highly dependent upon scale. A comparison of hiatus area between two successive system or series boundaries yields changes in location, shape, size and duration, indicative of the transient nature of vertical surface motion. As a single-step technique, it serves as a quantitative proxy for palaeotopography that can be calibrated using other geological data. The tool magnifies the need for geological mapping at the temporal resolution of stages, matching process rates. The method has no resolving power within conformable regions (basins) but connects around them. When applied to marine seismic sections that relate to rock record, not to time, biostratigraphic and radiometric data from deep wells are needed before hiatus areas – that relate to time – can be mapped.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Aaron Sidder

New research teases out variations in strain rates and explores potential earthquake hazards across the southern Basin and Range and Colorado Plateau.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


2017 ◽  
Vol 20 (10) ◽  
pp. 865-879
Author(s):  
S.V.S.S.N.V.G. Krishna Murthy ◽  
Frédéric Magoulès ◽  
B. V. Rathish Kumar ◽  
Vinay Kumar

Sign in / Sign up

Export Citation Format

Share Document