scholarly journals Southward Shift of Westerlies Intensifies the East Asian Early Summer Rainband Following El Niño

2020 ◽  
Vol 47 (17) ◽  
Author(s):  
Wenwen Kong ◽  
John C. H. Chiang
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Wenping Jiang ◽  
Gen Li ◽  
Gongjie Wang

El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed.


2018 ◽  
Vol 32 (1) ◽  
pp. 145-160 ◽  
Author(s):  
Yonghong Yao ◽  
Hai Lin ◽  
Qigang Wu

AbstractThe mei-yu onset over the middle to lower reaches of the Yangtze River Valley (MLYRV) varies considerably from early June to mid-July, which leads to large interannual changes in rainy-season length, total summer rainfall, and flooding potential. Previous studies have investigated the impact of El Niño–Southern Oscillation (ENSO) on the mei-yu onset. This study shows that a strong (weak) East Asian and western North Pacific (EAWNP) intraseasonal oscillation (ISO) in spring leads to an early (late) onset of the mei-yu over the MLYRV, and this ISO–mei-yu relationship is attributed to different types of ENSO in the preceding winter. A strong EAWNP ISO in spring is related to an eastern Pacific El Niño (EP El Niño) in the previous winter, and negative sea surface temperature (SST) anomalies in the eastern Indian Ocean and the South China Sea (SCS) in May, which can cause an early onset of the South China Sea summer monsoon that also favors an early mei-yu onset. In contrast, a weak EAWNP ISO in spring is associated with a central Pacific El Niño (CP El Niño) before April, but with an EP El Niño after April, and positive SST anomalies in both the eastern Indian Ocean and the SCS in May. A statistical forecast model combining the intensity of spring EAWNP ISO, CP ENSO, and EP ENSO indices shows a high prediction skill of the observed mei-yu onset date.


2016 ◽  
Vol 29 (5) ◽  
pp. 1919-1934 ◽  
Author(s):  
Xiong Chen ◽  
Jian Ling ◽  
Chongyin Li

Abstract Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.


2019 ◽  
Vol 53 (9-10) ◽  
pp. 6417-6435 ◽  
Author(s):  
Peng Wang ◽  
Chi-Yung Tam ◽  
Kang Xu

2018 ◽  
Author(s):  
Youjia Zou ◽  
Xiangying Xi

Abstract. Previous studies have suggested that an eastward propagation of the warm pool in the western Pacific during El Niño events may be induced by a weakening of the easterly Trade Winds (Alexander et al., 2002; Bjerknes, 1969). However, the dynamic mechanism of the Trade Winds weakening is not well understood. Here we use a model and other published proxy records to demonstrate that the anomalous southward shift of the south Pacific subtropical high (SPSH) may play a crucial role at the onset of El Niño events. By analyzing the relationship between the Trade Winds, the Equatorial Currents, the Eastern Boundary Currents and the SPSH, we find that an anomalous southward shift of the SPSH can result in a weakening of the SE Trade Winds and a southward intrusion of the NE Trade Winds, leading to a southward migration of the Trade Wind-induced Equatorial Currents, including the Equatorial Countercurrent (from ~5°–8° N to ~0°). The warm pool in the western equatorial Pacific is therefore forced to propagate eastward by the enhanced Equatorial Countercurrent and, thus, a warm phase in the central or the eastern equatorial Pacific. Moreover, the equatorward upwelling in the eastern South Pacific, usually recurving along the equator, shifts southward along with the SPSH, in turn diverts towards the west at ~15° S to feed the westward South Equatorial Currents, resulting in a failure of cooling sea surface in the eastern tropical Pacific, thus a flattening of the thermocline. The model experiments indicate that the meridional position and intensity of the Equatorial Countercurrent in the Pacific are some of the determining factors in giving rise to El Niño diversity, suggesting that there should be more frequent warm events due to a meridional expansion of the warm pool under global warming.


Sign in / Sign up

Export Citation Format

Share Document