El Niño–East Asian monsoon teleconnection and its diversity in CMIP5 models

2019 ◽  
Vol 53 (9-10) ◽  
pp. 6417-6435 ◽  
Author(s):  
Peng Wang ◽  
Chi-Yung Tam ◽  
Kang Xu
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Wenping Jiang ◽  
Gen Li ◽  
Gongjie Wang

El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed.


2006 ◽  
Vol 19 (18) ◽  
pp. 4508-4530 ◽  
Author(s):  
Ngar-Cheung Lau ◽  
Mary Jo Nath

Abstract The impacts of ENSO on the evolution of the East Asian monsoon have been studied using output from a general circulation model experiment. Observed monthly variations of the sea surface temperature (SST) field have been prescribed in the tropical eastern and central Pacific, whereas the atmosphere has been coupled to an oceanic mixed layer model beyond this forcing region. During the boreal summer of typical El Niño events, a low-level cyclonic anomaly is simulated over the North Pacific in response to enhanced condensational heating over the equatorial central Pacific. Advective processes associated with the cyclone anomaly lead to temperature tendencies that set the stage for the abrupt establishment of a strong Philippine Sea anticyclone (PSAC) anomaly in the autumn. The synoptic development during the onset of the PSAC anomaly is similar to that accompanying cold-air surges over East Asia. The air–sea interactions accompanying the intraseasonal variations (ISV) in the model atmosphere exhibit a strong seasonal dependence. During the summer, the climatological monsoon trough over the subtropical western Pacific facilitates positive feedbacks between the atmospheric and oceanic fluctuations. Conversely, the prevalent northeasterly monsoon over this region in the winter leads to negative feedbacks. The onset of the PSAC anomaly is seen to be coincident with a prominent episode of the leading ISV mode. The ENSO events could influence the amplitude of the ISV by modulating the large-scale flow environment in which the ISV are embedded. Amplification of the summer monsoon trough over the western Pacific during El Niño enhances air–sea feedbacks on intraseasonal time scales, thereby raising the amplitudes of the ISV. A weakening of the northeasterly monsoon in El Niño winters suppresses the frequency and strength of the cold-air surges associated with the leading ISV mode in that season. Many aspects of the model simulation of the relationships between ENSO and the East Asian monsoon are in agreement with observational findings.


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 327 ◽  
Author(s):  
Juan Li ◽  
Young-Min Yang ◽  
Bin Wang

The Asian-Australian monsoon (AAM) has far-reaching impacts on global and local climate. Accurate simulations of AAM precipitation and its variabilities are of scientific and social importance, yet remain a great challenge in climate modeling. The present study assesses the performance of the newly developed Nanjing University of Information Science and Technology Earth System Model version 3 (NESMv3), together with that of 20 Coupled Model Intercomparison Project phase 5 (CMIP5) models, in the simulation of AAM climatology, its major modes of variability, and their relationships with El Nino-Southern Oscillation (ENSO). It is concluded that NESMv3 (1) reproduces, well, the observed features of AAM annual mean precipitation; (2) captures the solstice mode (the first annual cycle mode) of AAM realistically, but has difficulty in simulating the equinox mode (the second annual cycle mode) of AAM; (3) underestimates the monsoon precipitation intensity over the East Asian subtropical frontal zone, but overestimates that over the tropical western North Pacific; (4) faithfully reproduces the first season-reliant empirical orthogonal function (SEOF) mode of AAM precipitation and the associated circulation anomalies, as well as its relationship with ENSO turnabout, although the correlation is underestimated. Precipitation anomaly patterns of the second SEOF mode and its relationship with El Nino are poorly simulated by NESMv3 and most of the CMIP5 models as well, indicating that the monsoon variability prior to the ENSO onset is difficult to reproduce. In general, NESMv3’s performance in simulating AAM precipitation ranks among the top or above-average compared with the 20 CMIP5 models. Better simulation of East Asian summer monsoon and western Pacific subtropical high remains a major target for future improvement, in order to provide a reliable tool to understand and predict AAM precipitation.


2020 ◽  
Vol 33 (5) ◽  
pp. 1777-1801 ◽  
Author(s):  
Juan Li ◽  
Bin Wang ◽  
Young-Min Yang

AbstractThe distinctive monsoon climate over East Asia, which is affected by the vast Eurasian continent and Pacific Ocean basin and the high-altitude Tibetan Plateau, provides arguably the best testbed for evaluating the competence of Earth system climate models. Here, a set of diagnostic metrics, consisting of 14 items and 7 variables, is specifically developed. This physically intuitive set of metrics focuses on the essential features of the East Asian summer monsoon (EASM) and East Asian winter monsoon (EAWM), and includes fields that depict the climatology, the major modes of variability, and unique characteristics of the EASM. The metrics are applied to multimodel historical simulations derived from 20 models that participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively), along with the newly developed Nanjing University of Information Science and Technology Earth System Model, version 3. The CMIP5 models show significant improvements over the CMIP3 models in terms of the simulated East Asian monsoon circulation systems on a regional scale, major modes of EAWM variability, the monsoon domain and precipitation intensity, and teleconnection associated with the heat source over the Philippine Sea. Clear deficiencies persist from CMIP3 to CMIP5 with respect to capturing the major modes of EASM variability, as well as the relationship between the EASM and ENSO during El Niño developing and decay phases. The possible origins that affect models’ performance are also discussed. The metrics provide a tool for evaluating the performance of Earth system climate models, and facilitating the assessment of past and projected future changes of the East Asian monsoon.


2020 ◽  
Vol 37 (10) ◽  
pp. 1102-1118 ◽  
Author(s):  
Dabang Jiang ◽  
Dan Hu ◽  
Zhiping Tian ◽  
Xianmei Lang

Sign in / Sign up

Export Citation Format

Share Document