scholarly journals Detecting and Evaluating Dust‐Events in North China with Ground Air Quality Data

2021 ◽  
Author(s):  
Peifeng Tong ◽  
Song Xi Chen ◽  
Cheng Yong Tang
Author(s):  
Ahmad R. Alsaber ◽  
Jiazhu Pan ◽  
Adeeba Al-Hurban 

In environmental research, missing data are often a challenge for statistical modeling. This paper addressed some advanced techniques to deal with missing values in a data set measuring air quality using a multiple imputation (MI) approach. MCAR, MAR, and NMAR missing data techniques are applied to the data set. Five missing data levels are considered: 5%, 10%, 20%, 30%, and 40%. The imputation method used in this paper is an iterative imputation method, missForest, which is related to the random forest approach. Air quality data sets were gathered from five monitoring stations in Kuwait, aggregated to a daily basis. Logarithm transformation was carried out for all pollutant data, in order to normalize their distributions and to minimize skewness. We found high levels of missing values for NO2 (18.4%), CO (18.5%), PM10 (57.4%), SO2 (19.0%), and O3 (18.2%) data. Climatological data (i.e., air temperature, relative humidity, wind direction, and wind speed) were used as control variables for better estimation. The results show that the MAR technique had the lowest RMSE and MAE. We conclude that MI using the missForest approach has a high level of accuracy in estimating missing values. MissForest had the lowest imputation error (RMSE and MAE) among the other imputation methods and, thus, can be considered to be appropriate for analyzing air quality data.


2021 ◽  
Vol 138 ◽  
pp. 104976
Author(s):  
Juan José Díaz ◽  
Ivan Mura ◽  
Juan Felipe Franco ◽  
Raha Akhavan-Tabatabaei

Author(s):  
Pedro Lucas ◽  
Jorge Silva ◽  
Filipe Araujo ◽  
Catarina Silva ◽  
Paulo Gil ◽  
...  

With the raising of environmental concerns regarding pollution, interest in monitoring air quality is increasing. However, air pollution data is mostly originated from a limited number of government-owned sensors, which can only capture a small fraction of reality. Improving air quality coverage in-volves reducing the cost of sensors and making data widely available to the public. To this end, the NanoSen-AQM project proposes the usage of low-cost nano-sensors as the basis for an air quality monitoring platform, capa-ble of collecting, aggregating, processing, storing, and displaying air quality data. Being an end-to-end system, the platform allows sensor owners to manage their sensors, as well as define calibration functions, that can im-prove data reliability. The public can visualize sensor data in a map, define specific clusters (groups of sensors) as favorites and set alerts in the event of bad air quality in certain sensors. The NanoSen-AQM platform provides easy access to air quality data, with the aim of improving public health.


Sign in / Sign up

Export Citation Format

Share Document