Composition of the Sub‐Cratonic Mantle of the Guiana Shield Inferred from Diamond‐Hosted Inclusions

Author(s):  
R. Bassoo ◽  
K. S. Befus
Author(s):  
Loïc Epelboin ◽  
Carole Eldin ◽  
Pauline Thill ◽  
Vincent Pommier de Santi ◽  
Philippe Abboud ◽  
...  

Abstract Purpose of Review In this review, we report on the state of knowledge about human Q fever in Brazil and on the Guiana Shield, an Amazonian region located in northeastern South America. There is a contrast between French Guiana, where the incidence of this disease is the highest in the world, and other countries where this disease is practically non-existent. Recent Findings Recent findings are essentially in French Guiana where a unique strain MST17 has been identified; it is probably more virulent than those usually found with a particularly marked pulmonary tropism, a mysterious animal reservoir, a geographical distribution that raises questions. Summary Q fever is a bacterial zoonosis due to Coxiella burnetii that has been reported worldwide. On the Guiana Shield, a region mostly covered by Amazonian forest, which encompasses the Venezuelan State of Bolivar, Guyana, Suriname, French Guiana, and the Brazilian State of Amapá, the situation is very heterogeneous. While French Guiana is the region reporting the highest incidence of this disease in the world, with a single infecting clone (MST 117) and a unique epidemiological cycle, it has hardly ever been reported in other countries in the region. This absence of cases raises many questions and is probably due to massive under-diagnosis. Studies should estimate comprehensively the true burden of this disease in the region.


2012 ◽  
Vol 9 (8) ◽  
pp. 3381-3403 ◽  
Author(s):  
T. R. Feldpausch ◽  
J. Lloyd ◽  
S. L. Lewis ◽  
R. J. W. Brienen ◽  
M. Gloor ◽  
...  

Abstract. Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.


2011 ◽  
Vol 9 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Jessica H Arbour ◽  
Hernán López-Fernández

A new species of Guianacara is described from tributaries of the Essequibo River and the rio Branco in Guyana and northern Brazil. Guianacara dacrya, new species, can be diagnosed from all congeners by the possession of a unique infraorbital stripe and by the shape of the lateral margin of the lower pharyngeal jaw tooth plate. Guianacara dacrya can be further distinguished from G. geayi, G. owroewefi, G. sphenozona and G. stergiosi by the possession of a thin midlateral bar, from G. cuyunii by the possession of dusky branchiostegal membranes and from G. oelemariensis by the possession of two supraneurals. This species differs from most congeners by the presence of white spots on the spiny portion of the dorsal fin, the placement of the midlateral spot, the presence of filaments on the dorsal, anal and in rare cases the caudal-fin and from at least the Venezuelan species by several morphometric variables. Guianacara dacrya is known from the Essequibo, Takutu and Ireng River basins of Guyana and possibly from the rio Uraricoera in the rio Branco basin in Brazil. A key to the species is provided.


Zootaxa ◽  
2021 ◽  
Vol 5048 (3) ◽  
pp. 435-443
Author(s):  
RACHEL D. GLYNN ◽  
ANDREW EDWARD Z. SHORT

The Neotropical water scavenger beetle genus Chasmogenus Sharp, 1882 is a diverse lineage with 34 described species. Here, three new species from the southwestern margin of the Guiana Shield are described using an integrative approach combining adult morphology and molecular data: Chasmogenus clinatus sp. n. (Brazil: Amazonas, Venezuela: Amazonas), C. gironae sp. n. (Venezuela: Amazonas), and C. inpa sp. n. (Brazil: Amazonas). Examination of the male genitalia is essential for confident identifications and thus unassociated females may prove extremely difficult to identify. New distributional records in Brazil for C. acuminatus Smith & Short, 2020 are provided as well as habitus images of newly described species and an updated key to the species from Venezuela, Suriname, Guyana, French Guiana and northern Brazil.  


2019 ◽  
Vol 505 ◽  
pp. 13-19 ◽  
Author(s):  
I.M. Artemieva ◽  
H. Thybo ◽  
Y. Cherepanova
Keyword(s):  

Lithos ◽  
2019 ◽  
Vol 326-327 ◽  
pp. 384-396 ◽  
Author(s):  
Dirk Spengler ◽  
Taisia A. Alifirova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document