scholarly journals Tree height integrated into pantropical forest biomass estimates

2012 ◽  
Vol 9 (8) ◽  
pp. 3381-3403 ◽  
Author(s):  
T. R. Feldpausch ◽  
J. Lloyd ◽  
S. L. Lewis ◽  
R. J. W. Brienen ◽  
M. Gloor ◽  
...  

Abstract. Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.

2012 ◽  
Vol 9 (3) ◽  
pp. 2567-2622 ◽  
Author(s):  
T. R. Feldpausch ◽  
J. Lloyd ◽  
S. L. Lewis ◽  
R. J. W. Brienen ◽  
E. Gloor ◽  
...  

Abstract. Above-ground tropical tree biomass and carbon storage estimates commonly ignore tree height. We estimate the effect of incorporating height (H) on forest biomass estimates using 37 625 concomitant H and diameter measurements (n = 327 plots) and 1816 harvested trees (n = 21 plots) tropics-wide to answer the following questions: 1. For trees of known biomass (from destructive harvests) which H-model form and geographic scale (plot, region, and continent) most reduces biomass estimate uncertainty? 2. How much does including H relationship estimates derived in (1) reduce uncertainty in biomass estimates across 327 plots spanning four continents? 3. What effect does the inclusion of H in biomass estimates have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of the destructively harvested trees was half (mean 0.06) when including H, compared to excluding H (mean 0.13). The power- and Weibull-H asymptotic model provided the greatest reduction in uncertainty, with the regional Weibull-H model preferred because it reduces uncertainty in smaller-diameter classes that contain the bulk of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows errors are reduced from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0) when including $H$. For all plots, above-ground live biomass was 52.2±17.3 Mg ha−1 lower when including H estimates (13%), with the greatest reductions in estimated biomass in Brazilian Shield forests and relatively no change in the Guyana Shield, central Africa and southeast Asia. We show fundamentally different stand structure across the four forested tropical continents, which affects biomass reductions due to $H$. African forests store a greater portion of total biomass in large-diameter trees and trees are on average larger in diameter. This contrasts to forests on all other continents where smaller-diameter trees contain the greatest fractions of total biomass. After accounting for variation in $H$, total biomass per hectare is greatest in Australia, the Guyana Shield, and Asia and lowest in W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if closed canopy tropical forests span 1668 million km2 and store 285 Pg C, then the overestimate is 35 Pg C if H is ignored, and the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree $H$ is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of pantropical carbon stocks and emissions due to deforestation.


2009 ◽  
Vol 51 (1) ◽  
pp. 40-48
Author(s):  
Toomas Frey

Stand structure links up canopy processes and forest management Above- and belowground biomass and net primary production (Pn) of a maturing Norway spruce (Picea abies (L.) Karst.) forest (80 years old) established on brown soil in central Estonia were 227, 50 and 19.3 Mg ha correspondingly. Stand structure is determined mostly by mean height and stand density, used widely in forestry, but both are difficult to measure with high precision in respect of canopy processes in individual trees. However, trunk form quotient (q2) and proportion of living crown in relation to tree height are useful parameters allowing describe stand structure tree by tree. Based on 7 model trees, leaf unit mass assimilation activity and total biomass respiration per unit mass were determined graphically as mean values for the whole tree growth during 80 years of age. There are still several possible approaches not used carefully enough to integrate experimental work at instrumented towers with actual forestry measurement. Dependence of physiological characteristics on individual tree parameters is the missing link between canopy processes and forest management.


1983 ◽  
Vol 13 (3) ◽  
pp. 372-383 ◽  
Author(s):  
W. Carter Johnson ◽  
David M. Sharpe

Records of merchantable forest volumes can be used to estimate rates of carbon storage or depletion using a ratio to convert merchantable weights to total forest biomass (T/M ratio). We present evidence that the T/M ratio used to estimate carbon storage in midlatitude forests has been seriously underestimated by neglecting carbon in trees of unmerchantable size and quality and in coarse and fine litter. Ratios for forest types and size classes in Virginia based on detailed plot-level analysis ranged from 2.1 to 5.0; the mean weighted ratio of 2.7 was 55% greater than a ratio currently in use. More general analysis indicated that the T/M ratio for Virginia was representative of forests of the East; forests of the western United States were comparable to those of the East when woody debris was included in the estimate of total biomass. Application of the weighted ratio to growth of United States forests during 1952–1977 yielded a per-annum accretion of carbon in biomass (excluding soil carbon) of 0.15 Gt C•year−1, about 10% of the 1.6–1.9 Gt C•year−1 computed for midlatitude forests. More complete studies of counterbalancing carbon losses from forests, particularly losses in litter and soils after forest harvest and conversion to agriculture, are needed before the source or sink nature of midlatitude forests can be determined with confidence.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250073
Author(s):  
Liu Shu-Qin ◽  
Bian Zhen ◽  
Xia Chao-Zong ◽  
Bilal Ahmad ◽  
Zhang Ming ◽  
...  

According to the forest resources inventory data for different periods and the latest estimation parameters of forest carbon reserves in China, the carbon reserves and carbon density of forest biomass in the Tibet Autonomous Region from 1999 to 2019 were estimated using the IPCC international carbon reserves estimation model. The results showed that, during the past 20 years, the forest area, forest stock, and biomass carbon storage in Tibet have been steadily increasing, with an average annual increase of 1.85×104 hm2, 0.033×107 m3, and 0.22×107 t, respectively. Influenced by geographical conditions and the natural environment, the forest area and biomass carbon storage gradually increased from the northwest to the southeast, particularly in Linzhi and Changdu, where there are many primitive forests, which serve as important carbon sinks in Tibet. In terms of the composition of tree species, coniferous forests are dominant in Tibet, particularly those containing Abies fabri, Picea asperata, and Pinus densata, which comprise approximately 45% of the total forest area in Tibet. The ecological location of Tibet has resulted in the area being dominated by shelter forest, comprising 68.76% of the total area, 64.72% of the total forest stock, and 66.34% of the total biomass carbon reserves. The biomass carbon storage was observed to first increase and then decrease with increasing forest age, which is primarily caused by tree growth characteristics. In over-mature forests, trees’ photosynthesis decreases along with their accumulation of organic matter, and the trees can die. In addition, this study also observed that the proportion of mature and over-mature forest in Tibet is excessively large, which is not conducive to the sustainable development of forestry in the region. This problem should be addressed in future management and utilization activities.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1386
Author(s):  
Florian Wilms ◽  
Nils Duppel ◽  
Tobias Cremer ◽  
Ferréol Berendt

The estimation of forest biomass is gaining interest not only for calculating harvesting volumes but also for carbon storage estimation. However, bark (and carbon) compounds are not distributed equally along the stem. Particularly when looking at Scots pine, a radical change in the structure of the bark along the stem can be noted. At the bark transition area, the bark changes from thick and rough to thin and smooth. The aim of our study was (1) to analyze the height of the bark transition area where the bark structure changes and (2) to analyze the effect of cardinal direction on the bark thickness. Regression analyses and forward selection were performed including measured tree height, DBH, bark thickness, crown base height and upper and lower heights of the bark transition areas of 375 trees. While the cardinal direction had no effect on bark thickness, DBH was found to have a significant effect on the heights of the bark transition areas, with stand density and tree height having a minor additional effect. These variables can be used to estimate timber volume (without bark) with higher accuracy and to predict the carbon storage potential of forest biomass according to different tree compartments and compounds.


1992 ◽  
Vol 19 (4) ◽  
pp. 307-315 ◽  
Author(s):  
I. Foster Brown ◽  
Daniel C. Nepstad ◽  
Ivan de O. Pires ◽  
Leda M. Luz ◽  
Andréa S. Alechandre

Large-scale forest conversion in Brazil, primarily to cattle pasture, contributes significantly to the global anthropogenic emission of CO2 into the atmosphere. An alternative land-use, namely extractive reserves for forest residents, may serve as one means of using Amazonian forests sustainably and of maintaining carbon in living matter rather than adding it to that in the atmosphere.In the Seringal (former rubber estate) Porongaba (6,800 ha) of the Chico Mendes Extractive Reserve, Acre, Brazil, primary forest still covers more than 90% of the area. Total biomass in primary forest is estimated at 426 tons per ha, equivalent to 213 t C per ha. Rubber tappers effectively maintain about 60,000 tons of carbon per household (family unit) in forest biomass and thus out of the atmosphere. Deforestation of primary forest was less than 0.6% per yr — much less than rates of natural disturbances for other neotropical forests.Slash-and-burn agriculture in the Seringal Porongaba releases carbon at a gross rate of some 200 t C per yr per household. Net releases are much less, as regrowth forests absorb carbon at rates of about 9 t C per ha per yr. The net areal flux of carbon to the atmosphere from land-use in Seringal is much less than one ton of carbon per ha per yr, which is equivalent to less than 0.3% per yr of the carbon stock in forest biomass. If Seringal Porongaba is typical of the three million hectares in extractive reserves in Brazilian Amazonia, then these reserves are calculated to retain 0.6 Gigatons of carbon in the terrestrial biota.Adverse changes in income patterns for rubber tappers could lead to abandonment of extractive reserves or increased deforestation within them. Diversification and improvement of income from non-timber forest products are needed to maintain rubber tappers in extractive reserves. Most beneficiaries of carbon storage in these and other reserves live outside Brazil; devising means of recompensation for these benefits is a challenge for the global society.


2017 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Andes Hamuraby Rozak ◽  
Sri Astutik ◽  
Zaenal Mutaqien ◽  
Didik Widyatmoko ◽  
Endah Sulistyawati

Hiperdominansi jenis dan biomassa adalah suatu konsep yang menjelaskan pentingnya sebagian kecil jenis dan biomassa relatif terhadap rata-rata biomassa pohon pada suatu kawasan hutan. Pemahaman pada konsep ini berimplikasi pada upaya monitoring kawasan hutan khususnya bagi spesies penyumbang biomassa terbesar dan membantu pemahaman pada proses restorasi ekologinya. Analisis hiperdominansi jenis dan kontribusi pohon besar (DBH>50 cm) terhadap biomassa pohon telah dilakukan di kawasan hutan Taman Nasional Gunung Gede Pangrango (TNGGP). Sejumlah 26 plot pengamatan telah dibuat pada 26 level ketinggian yang berbeda (1013-3010 m dpl) dan dikelompokkan menjadi tiga zona yaitu zona submontana, montana, dan subalpine. Pohon-pohon yang terdapat dalam plot pengamatan kemudian dikelompokkan menjadi 3 kelompok diameter yaitu pohon kecil (5-30 cm), pohon sedang (30-50 cm), dan pohon besar (>50 cm). Hasil analisis menunjukkan bahwa hiperdominansi jenis terjadi di hutan TNGGP. Empat jenis pohon dari 114 jenis yang teridentifikasi yaitu Schima wallichii, Altingia excelsa, Vaccinium varingiaefolium, dan Castanopsis acuminatissima merepresentasikan 56,96% dari total biomassa pohon yang ada di plot TNGGP. Lebih lanjut, pohon kecil dan besar diketahui sebagai penyumbang biomassa yang sangat signifikan dibandingkan pohon sedang. Pada level plot penelitian, pohon dengan DBH>50 cm yang berjumlah 192 individu (atau 13%) dari 1471 individu pohon mampu merepresentasikan 61,4% dari total biomassanya. Namun demikian, pada level kawasan hutan, pohon kecil dan pohon besar memiliki kontribusi yang sama signifikannya terhadap biomassa per hektarnya yaitu masing-masing sebesar 40,9% dan 38,77%. Hasil-hasil tersebut menunjukkan bahwa hanya sedikit jenis pohon saja mampu merepresentasikan sebagian besar dari total biomassa pohon. Pohon-pohon kecil dan besar diketahui memainkan peranan yang penting dalam biomassa di hutan TNGGP.Hyperdominance of Tree Species and Biomass in Mount Gede Pangrango National Park, IndonesiaAbstractThe hyperdominance of tree species and biomass is a concept explaining the importance of a small portion of species and biomass relative to the average of biomass in a forested area. Understanding this concept has important implication on forest monitoring, especially to monitor the most significant species that show high contributes on biomass and its ecological restoration. Hyperdominance analysis of tree species and large trees (DBH > 50 cm) contribution to tree biomass were investigated in tropical mountain forest of Mount Gede Pangrango National Park (TNGGP). A total of 26 sample plots were installed in 26 different altitude between 1013 and 3010 m asl and grouped into three zones i.e. submontane, montane, and subalpine zones. Trees within plot were identified, measured, and grouped into three groups i.e. small (DBH 5-30 cm), medium (DBH 30-50 cm), and large trees (DBH>50 cm). The result showed that there were hyperdominant in TNGGP. Four species from 114 identified tree species i.e. Schima wallichii, Altingia excelsa, Vaccinium varingiaefolium, and Castanopsis acuminatissima represented 56.96% of the total biomass in the plot level. Furthermore, only 13% of trees from 1471 trees responsible for 61.4% of the total tree biomass in the plot level. However, small and large trees have similar significant contribution to the average biomass in the forest level i.e. 40.9% and 38.77%, respectively. These results suggest that only few species represent a huge amount of biomass. Both small and large trees play important role in the forest biomass of TNGGP.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1661
Author(s):  
Md Mizanur Rahman ◽  
Gauranga Kumar Kundu ◽  
Md Enamul Kabir ◽  
Heera Ahmed ◽  
Ming Xu

Dealing with two major challenges, climate change mitigation and biodiversity loss, under the same management program, is more noteworthy than addressing these two separately. Homegardens, a sustainable agroforestry system and a home of diverse species, can be a possible choice to address these two issues. In this study, we assessed tree coverage, and the direct and indirect effects of tree diversity on carbon storage in different carbon pools through stand structure in homegardens of southwestern Bangladesh, using Sentinel 2 and field inventory data from 40 homesteads in eight villages. An unsupervised classification method was followed to assess homegardens’ tree coverage. We found a high tree coverage (24.34% of total area of Dighalia) in homesteads, with a high overall accuracy of 96.52%. The biomass and soil organic carbon (p < 0.05) varied significantly among the eight villages, while total carbon stock did not vary significantly (p > 0.05). Shannon diversity had both direct and indirect effects on biomass carbon, upper layer soil organic carbon and total carbon storage, while basal area mediated the indirect effect. Both basal area and tree height had positive effects on biomass carbon and total carbon storage, with basal area having the strongest effect. These findings suggest that we must maintain higher diversity and tree height in order to maximize and sustain carbon storage, where tree diversity increases stand basal area and improves total carbon storage (including soil organic) in homegardens. Therefore, privately managed homegardens could be a potential nature-based solution for biodiversity conservation and climate change mitigation in Bangladesh.


2011 ◽  
Vol 59 (7) ◽  
pp. 640 ◽  
Author(s):  
J. H. Jonson ◽  
D. Freudenberger

In the south-western region of Australia, allometric relationships between tree dimensional measurements and total tree biomass were developed for estimating carbon sequestered in native eucalypt woodlands. A total of 71 trees representing eight local native species from three genera were destructively sampled. Within this sample set, below ground measurements were included for 51 trees, enabling the development of allometric equations for total biomass applicable to small, medium, and large native trees. A diversity of tree dimensions were recorded and regressed against biomass, including stem diameter at 130 cm (DBH), stem diameter at ground level, stem diameter at 10 cm, stem diameter at 30 cm, total tree height, height of canopy break and mean canopy diameter. DBH was consistently highly correlated with above ground, below ground and total biomass. However, measurements of stem diameters at 0, 10 and 30 cm, and mean canopy diameter often displayed equivalent and at times greater correlation with tree biomass. Multi-species allometric equations were also developed, including ‘Mallee growth form’ and ‘all-eucalypt’ regressions. These equations were then applied to field inventory data collected from three locally dominant woodland types and eucalypt dominated environmental plantings to create robust relationships between biomass and stand basal area. This study contributes the predictive equations required to accurately quantify the carbon sequestered in native woodland ecosystems in the low rainfall region of south-western Australia.


2016 ◽  
Vol 167 (2) ◽  
pp. 90-97 ◽  
Author(s):  
Oliver Gardi ◽  
Guillaume Schaller ◽  
Matthias Neuner ◽  
Sophia Mack

Determining the carbon storage of trees in urban areas of the city of Bern While the amount carbon stored in tree biomass within Swiss forests is well studied, many uncertainties remain for estimating the carbon stored by trees in settlements. As a part of the project «Urban Green and Climate», various existing biomass models were compared with the measured aboveground biomass of 21 trees within the city of Bern. Traditional forestry models that estimate the biomass based on the diameter at breast height only have a limited capacity to accurately predict the biomass of single urban trees. Good predictions are however achieved by using a biomass model that additionally includes tree height (R2 = 0.96). This model was then used to determine the aboveground tree biomass at 179 sample plots in Bern. The carbon densities (t C/ha) of the plots were used to calibrate a model predicting the carbon storage in the aboveground biomass for urban tree populations based on LiDAR data (R2 = 0.84). A value of 14.9 ± 0.5 t C/ha was obtained for the developed area of Bern (i.e. areas without water, forest and agricultural land). With this model and available LiDAR data, the carbon stored in the aboveground biomass of trees outside forests and its change over time could be determined with high accuracy for all of Switzerland.


Sign in / Sign up

Export Citation Format

Share Document