scholarly journals Analysing the thermodynamic phase partitioning of mixed phase clouds over the Southern Ocean using passive satellite observations

Author(s):  
Q. Coopman ◽  
C. Hoose ◽  
M. Stengel
2020 ◽  
Author(s):  
Jessica Danker ◽  
Odran Sourdeval ◽  
Isabel L. McCoy ◽  
Robert Wood ◽  
Anna Possner

<p>On average stratocumulus clouds cover about 23% of the ocean surface and are important for Earth’s radiative balance. They typically self-organize into cellular patterns and thus are often referred to as mesoscale-cellular convective (MCC) cloud systems. In the Southern Ocean (SO), low-level clouds cover between 20% to 40% of the ocean surface in the mid-latitudes where they exert a substantial radiative cooling. In a previous study, McCoy et al (2017) demonstrated that different MCC regimes may be associated with different cloud albedos and thus different cloud radiative forcing.<br>Many of the MCC clouds in the SO are not pure liquid but contain a mixture of liquid and ice. Here we investigate whether the formation of ice within these mixed-phase clouds influences MCC organization and thus the cloud-radiative effect.<br>To investigate the cloud phase we use the raDAR-liDAR (DARDAR) data product (version 1) from Cloud-Aerosol-Water-Radiation Interactions (ICARE) Data and Services Center which provides collocated data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS). The “Simplified DARMASK Categorization Flag” of DARDAR is used to categorize the vertically resolved cloud phase into a single cloud phase per data point: clear, multi-layer, liquid, mixed or ice. In order to distinguish between open and<br>closed MCC regimes, we collocate the DARDAR product with an MCC classification data set from McCoy et al (2017) which is based on a neural network algorithm applied to MODIS Aqua data.<br>Our preliminary results confirm previous ground-based observations that most mixed-phase clouds are composed of a supercooled liquid top and ice underneath. Furthermore, our preliminary analysis suggests open MCCs occur more frequently as mixed-phase clouds (57% (DJF), 55% (JJA)) in the SO compared to liquid clouds (39% (DJF), 37% (JJA)) during both summer (DJF) and winter (JJA). In contrast, closed MCCs are more likely to appear as liquid clouds (58%) in comparison to mixed-phase clouds (40%) during winter, whereas during summer there seems to be no tendency for closed MCCs to be either liquid (51%) or mixed (49%).</p>


2010 ◽  
Vol 138 (3) ◽  
pp. 839-862 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Alex Nazarov

Abstract The cloud structure associated with two frontal passages over the Southern Ocean and Tasmania is investigated. The first event, during August 2006, is characterized by large quantities of supercooled liquid water and little ice. The second case, during October 2007, is more mixed phase. The Weather Research and Forecasting model (WRFV2.2.1) is evaluated using remote sensed and in situ observations within the post frontal air mass. The Thompson microphysics module is used to describe in-cloud processes, where ice is initiated using the Cooper parameterization at temperatures lower than −8°C or at ice supersaturations greater than 8%. The evaluated cases are then used to numerically investigate the prevalence of supercooled and mixed-phase clouds over Tasmania and the ocean to the west. The simulations produce marine stratocumulus-like clouds with maximum heights of between 3 and 5 km. These are capped by weak temperature and strong moisture inversions. When the inversion is at temperatures warmer than −10°C, WRF produces widespread supercooled cloud fields with little glaciation. This is consistent with the limited in situ observations. When the inversion is at higher altitudes, allowing cooler cloud tops, glaciated (and to a lesser extent mixed phase) clouds are more common. The simulations are further explored to evaluate any orographic signature within the cloud structure over Tasmania. No consistent signature is found between the two cases.


2018 ◽  
Vol 18 (23) ◽  
pp. 17047-17059 ◽  
Author(s):  
Amy Solomon ◽  
Gijs de Boer ◽  
Jessie M. Creamean ◽  
Allison McComiskey ◽  
Matthew D. Shupe ◽  
...  

Abstract. This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.


2011 ◽  
Vol 116 (D18) ◽  
Author(s):  
Yoo-Jeong Noh ◽  
Curtis J. Seaman ◽  
Thomas H. Vonder Haar ◽  
David R. Hudak ◽  
Peter Rodriguez

2021 ◽  
Author(s):  
Jonah K Shaw ◽  
Zachary McGraw ◽  
Olimpia Bruno ◽  
Trude Storelvmo ◽  
Stefan Hofer

2018 ◽  
Author(s):  
Amy Solomon ◽  
Gijs de Boer ◽  
Jessie M. Creamean ◽  
Allison McComiskey ◽  
Matthew D. Shupe ◽  
...  

Abstract. This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations of an Arctic mixed-phase stratocumulus cloud observed at Oliktok Point, Alaska in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations, i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INP causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INP at the base of the cloud-driven mixed-layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.


Sign in / Sign up

Export Citation Format

Share Document