scholarly journals Using satellite observations to evaluate model microphysical representation of Arctic mixed-phase clouds

2021 ◽  
Author(s):  
Jonah K Shaw ◽  
Zachary McGraw ◽  
Olimpia Bruno ◽  
Trude Storelvmo ◽  
Stefan Hofer
2011 ◽  
Vol 116 (D18) ◽  
Author(s):  
Yoo-Jeong Noh ◽  
Curtis J. Seaman ◽  
Thomas H. Vonder Haar ◽  
David R. Hudak ◽  
Peter Rodriguez

2021 ◽  
Author(s):  
Jonah K Shaw ◽  
Zachary McGraw ◽  
Olimpia Bruno ◽  
Trude Storelvmo ◽  
Stefan Hofer

2011 ◽  
Vol 11 (2) ◽  
pp. 5003-5017 ◽  
Author(s):  
F. Niu ◽  
Z. Li

Abstract. Aerosols may modify cloud properties and precipitation via a variety of mechanisms with varying and contradicting consequences. Using a large ensemble of satellite data acquired by the Moderate Resolution Imaging Spectroradiometer onboard the Earth Observing System's Aqua platform, the CloudSat cloud profiling radar and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the tropical oceans, we identified two distinct responses of clouds and precipitation to increases in aerosol loading. Cloud-top temperatures decrease significantly with increasing aerosol index (AI) over oceans and aerosol optical depth (AOT) over land for mixed-phase clouds with warm cloud bases; no significant changes were found for liquid clouds. The distinct responses are explained by two mechanisms, namely, the aerosol invigoration effect and the microphysical effect. Aerosols can significantly invigorate convection mainly through ice processes, while precipitation from liquid clouds is suppressed through aerosol microphysical processes. Precipitation rates are found to increase with AI for mixed-phase clouds, but decrease for liquid clouds, suggesting that the dominant effect differs for the two types of clouds. These effects change the overall distribution of precipitation rates, leading to more or heavier rains in dirty environments than in cleaner ones.


2020 ◽  
Author(s):  
Jessica Danker ◽  
Odran Sourdeval ◽  
Isabel L. McCoy ◽  
Robert Wood ◽  
Anna Possner

<p>On average stratocumulus clouds cover about 23% of the ocean surface and are important for Earth’s radiative balance. They typically self-organize into cellular patterns and thus are often referred to as mesoscale-cellular convective (MCC) cloud systems. In the Southern Ocean (SO), low-level clouds cover between 20% to 40% of the ocean surface in the mid-latitudes where they exert a substantial radiative cooling. In a previous study, McCoy et al (2017) demonstrated that different MCC regimes may be associated with different cloud albedos and thus different cloud radiative forcing.<br>Many of the MCC clouds in the SO are not pure liquid but contain a mixture of liquid and ice. Here we investigate whether the formation of ice within these mixed-phase clouds influences MCC organization and thus the cloud-radiative effect.<br>To investigate the cloud phase we use the raDAR-liDAR (DARDAR) data product (version 1) from Cloud-Aerosol-Water-Radiation Interactions (ICARE) Data and Services Center which provides collocated data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS). The “Simplified DARMASK Categorization Flag” of DARDAR is used to categorize the vertically resolved cloud phase into a single cloud phase per data point: clear, multi-layer, liquid, mixed or ice. In order to distinguish between open and<br>closed MCC regimes, we collocate the DARDAR product with an MCC classification data set from McCoy et al (2017) which is based on a neural network algorithm applied to MODIS Aqua data.<br>Our preliminary results confirm previous ground-based observations that most mixed-phase clouds are composed of a supercooled liquid top and ice underneath. Furthermore, our preliminary analysis suggests open MCCs occur more frequently as mixed-phase clouds (57% (DJF), 55% (JJA)) in the SO compared to liquid clouds (39% (DJF), 37% (JJA)) during both summer (DJF) and winter (JJA). In contrast, closed MCCs are more likely to appear as liquid clouds (58%) in comparison to mixed-phase clouds (40%) during winter, whereas during summer there seems to be no tendency for closed MCCs to be either liquid (51%) or mixed (49%).</p>


2010 ◽  
Vol 138 (3) ◽  
pp. 839-862 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Alex Nazarov

Abstract The cloud structure associated with two frontal passages over the Southern Ocean and Tasmania is investigated. The first event, during August 2006, is characterized by large quantities of supercooled liquid water and little ice. The second case, during October 2007, is more mixed phase. The Weather Research and Forecasting model (WRFV2.2.1) is evaluated using remote sensed and in situ observations within the post frontal air mass. The Thompson microphysics module is used to describe in-cloud processes, where ice is initiated using the Cooper parameterization at temperatures lower than −8°C or at ice supersaturations greater than 8%. The evaluated cases are then used to numerically investigate the prevalence of supercooled and mixed-phase clouds over Tasmania and the ocean to the west. The simulations produce marine stratocumulus-like clouds with maximum heights of between 3 and 5 km. These are capped by weak temperature and strong moisture inversions. When the inversion is at temperatures warmer than −10°C, WRF produces widespread supercooled cloud fields with little glaciation. This is consistent with the limited in situ observations. When the inversion is at higher altitudes, allowing cooler cloud tops, glaciated (and to a lesser extent mixed phase) clouds are more common. The simulations are further explored to evaluate any orographic signature within the cloud structure over Tasmania. No consistent signature is found between the two cases.


2009 ◽  
Vol 114 (D12) ◽  
Author(s):  
Adam J. Smith ◽  
Vincent E. Larson ◽  
Jianguo Niu ◽  
J. Adam Kankiewicz ◽  
Lawrence D. Carey

Sign in / Sign up

Export Citation Format

Share Document