scholarly journals A Modeling Case Study of Mixed-Phase Clouds over the Southern Ocean and Tasmania

2010 ◽  
Vol 138 (3) ◽  
pp. 839-862 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Alex Nazarov

Abstract The cloud structure associated with two frontal passages over the Southern Ocean and Tasmania is investigated. The first event, during August 2006, is characterized by large quantities of supercooled liquid water and little ice. The second case, during October 2007, is more mixed phase. The Weather Research and Forecasting model (WRFV2.2.1) is evaluated using remote sensed and in situ observations within the post frontal air mass. The Thompson microphysics module is used to describe in-cloud processes, where ice is initiated using the Cooper parameterization at temperatures lower than −8°C or at ice supersaturations greater than 8%. The evaluated cases are then used to numerically investigate the prevalence of supercooled and mixed-phase clouds over Tasmania and the ocean to the west. The simulations produce marine stratocumulus-like clouds with maximum heights of between 3 and 5 km. These are capped by weak temperature and strong moisture inversions. When the inversion is at temperatures warmer than −10°C, WRF produces widespread supercooled cloud fields with little glaciation. This is consistent with the limited in situ observations. When the inversion is at higher altitudes, allowing cooler cloud tops, glaciated (and to a lesser extent mixed phase) clouds are more common. The simulations are further explored to evaluate any orographic signature within the cloud structure over Tasmania. No consistent signature is found between the two cases.

2018 ◽  
Author(s):  
Ulrike Lohmann ◽  
David Neubauer

Abstract. Clouds are important in the climate system because of their large influence on the radiation budget. On the one hand, they scatter solar radiation and with that cool the climate. On the other hand, they absorb and re-emit terrestrial radiation, which causes a warming. How clouds change in a warmer climate is one of the largest uncertainties for the equilibrium climate sensitivity (ECS). While a large spread in the cloud feedback arises from low-level clouds, it was recently shown that also mixed-phase clouds are important for ECS. If mixed-phase clouds in the current climate contain too few supercooled cloud droplets, too much ice will change to liquid water in a warmer climate. As shown by Tan et al. (2016), this overestimates the negative cloud phase feedback and underestimates ECS in the CAM global climate model (GCM). Here we are using the newest version of the ECHAM6-HAM2 GCM to investigate the importance of mixed-phase clouds for ECS. Although we also considerably underestimate the fraction of supercooled liquid water globally in the reference version of ECHAM6-HAM2 GCM, we do not obtain increases in ECS in simulations with more supercooled liquid water in the present-day climate, contrary to the findings by Tan et al. (2016). We hypothesize that it is not the global supercooled liquid water fraction that matters, but only how well low- and mid-level mixed-phase clouds with cloud top temperatures in the mixed-phase temperature range between 0 and −35 ºC are simulated. These occur most frequent in mid-latitudes, in particular over the Southern Ocean where they determine the amount of absorbed shortwave radiation. In ECHAM6-HAM2 the amount of absorbed shortwave radiation over the Southern Ocean is only overestimated if all clouds below 0 ºC consist exclusively of ice and only in this simulation is ECS is significantly smaller than in all other simulations. Hence, the negative cloud phase feedback seems to be important only if the optically thin low- and mid-level mid-latitude clouds have the wrong phase (ice instead of liquid water) in the absence of overlying clouds. In all other simulations, changes in cloud feedbacks associated with cloud amount and cloud top pressure, dominate.


2019 ◽  
Vol 124 (5) ◽  
pp. 2677-2701 ◽  
Author(s):  
Yoo‐Jeong Noh ◽  
Steven D. Miller ◽  
Andrew K. Heidinger ◽  
Gerald G. Mace ◽  
Alain Protat ◽  
...  

2021 ◽  
Author(s):  
Paraskevi Georgakaki ◽  
Georgia Sotiropoulou ◽  
Etienne Vignon ◽  
Alexis Berne ◽  
Athanasios Nenes

<p>In-situ observations of mixed-phase clouds (MPCs) forming over mountain tops regularly reveal that ice crystal number concentrations (ICNCs) are orders of magnitude higher than ice-nucleating particle concentrations. This discrepancy has often been attributed to the influence of surface processes such as blowing snow and airborne hoar frost. Ιn-cloud secondary ice production (SIP) processes may also explain this discrepancy, but their contribution has received less attention.<br>Here we explore the potential role of SIP processes on orographic MPCs observed during the Cloud and Aerosol Characterization Experiment (CLACE) 2014 campaign at the mountain-top site of Jungfraujoch in the Swiss Alps using the Weather Research and Forecasting model (WRF). The Hallett-Mossop (H-M) mechanism, included in the default version of the Morrison scheme in WRF, is ruled out since the simulated clouds were outside the active temperature range for this process. This study investigates if the implementation of two additional SIP mechanisms in WRF, namely collisional break-up (BR) between ice hydrometeors and frozen droplet shattering (DS), can bridge the gap between observed and modeled ICNCs. DS is inefficient in the examined conditions due to a lack of sufficiently large raindrops to trigger this process. The BR mechanism is likely important in Alpine MPCs, but the process is activated only within seeder-feeder situations, when precipitation particles are seeding the low-level MPCs inducing their glaciation. At times when a cloud exists near the ground, blowing snow ice particles may be mixed among supercooled liquid droplets and thus contribute significantly to ice growth, but they cannot account for the observed ICNCs. Our findings indicate that outside the H-M temperature range, ice-seeding and blowing snow can initiate ice multiplication in the Alps through the BR mechanism, which is found to elevate the modeled ICNCs up to 3 orders of magnitude, providing a better agreement with in-situ measurements. This highlights the importance of considering both SIP and surface-based processes in weather-prediction and climate models.</p>


2006 ◽  
Vol 63 (11) ◽  
pp. 2865-2880 ◽  
Author(s):  
Alexei Korolev ◽  
George A. Isaac

Abstract The results of in situ observations of the relative humidity in liquid, mixed, and ice clouds typically stratiform in nature and associated with mesoscale frontal systems at temperatures −45°C < Ta < −5°C are presented. The data were collected with the help of instrumentation deployed on the National Research Council (NRC) Convair-580. The length of sampled in-cloud space is approximately 23 × 103 km. The liquid sensor was calibrated in liquid clouds with the assumption that the air in liquid clouds is saturated with respect to water. It was found that the relative humidity in mixed-phase clouds is close to saturation over water in the temperature range from −5° to −35°C for an averaging scale of 100 m. In ice clouds the relative humidity over ice is not necessarily equal to 100%, and it may be either lower or higher than saturation over ice, but it is always lower than saturation over water. On average the relative humidity in ice clouds increases with a decrease of temperature. At −40°C the relative humidity over ice is midway between saturation over ice and liquid. A parameterization for the relative humidity in ice clouds is suggested. A large fraction of ice clouds was found to be undersaturated with respect to ice. The fraction of ice clouds undersaturated with respect to ice increases toward warmer temperatures.


Sign in / Sign up

Export Citation Format

Share Document