Impacts of ozone‐vegetation interactions on ozone pollution episodes in North China and the Yangtze River Delta

Author(s):  
Cheng Gong ◽  
Hong Liao ◽  
Xu Yue ◽  
Yimian Ma ◽  
Yadong Lei
2022 ◽  
Vol 807 ◽  
pp. 150306
Author(s):  
Dandan Zhao ◽  
Jinyuan Xin ◽  
Weifeng Wang ◽  
Danjie Jia ◽  
Zifa Wang ◽  
...  

2020 ◽  
Author(s):  
Wuke Wang

<p><span>Ozone pollution is currently a serious environmental issue in China. Most of studies have attributed the surface ozone pollution over China to the strong photochemical production from anthropogenic sources. As another important source of tropospheric ozone, the stratospheric intrusion (SI), however, has been less concerned. This study investigates the SI events over the Yangtze River Delta in eastern China using the newest ERA5 (the fifth generation of ECMWF atmospheric reanalysis) meteorological and ozone data, the In-service Aircraft for a Global Observing System (IAGOS) ozone profiles and the station-based ground-level ozone measurements. Results indicate that SI plays important roles in spring and summer ozone pollution episodes over the Yangtze River Delta, eastern China. Based on CAM-Chem (the Community Atmosphere Model with Chemistry) and LPDM (Lagrangian Particle Dispersion Modeling) model simulations, we found that deep SIs contribute ~15 ppbv in spring and ~10 ppbv in summer to surface ozone variations in eastern China. A deep SI event occurred in 2018 spring associated with a strong horizontal-trough, which brought ozone-rich air from the stratosphere to the troposphere and resulted in severe surface ozone pollution over the Yangtze River Delta. From 7-year statistics, we found that strong SI events during summer are associated with a cyclonic valley between the South Asian High and the Subtropical High, accompanied by downward fast transport of ozone from the stratosphere to the troposphere. Our results provide important information for surface ozone prediction and control in eastern China.</span></p>


2020 ◽  
Vol 20 (22) ◽  
pp. 13781-13799
Author(s):  
Chenchao Zhan ◽  
Min Xie ◽  
Chongwu Huang ◽  
Jane Liu ◽  
Tijian Wang ◽  
...  

Abstract. Landfall typhoons can significantly affect O3 in the Yangtze River Delta (YRD) region. In this study, we investigate a unique case characterized by two multiday regional O3 pollution episodes related to four successive landfall typhoons in the summer of 2018 in the YRD. The results show that O3 pollution episodes mainly occurred during the period from the end of a typhoon to the arrival of the next typhoon. The time when a typhoon reached the 24 h warning line and the time when the typhoon dies away in mainland China can be roughly regarded as time nodes. Meanwhile, the variations of O3 were related to the track, duration and landing intensity of the typhoons. The impact of typhoons on O3 was like a wave superimposed on the background of high O3 concentration in the YRD in summer. When a typhoon was near the 24 h warning line before it landed on the coastline of the YRD, the prevailing wind originally from the ocean changed to be from inland, and it transported lots of precursors from the polluted areas to the YRD. Under influences of the typhoon, the low temperature, strong upward airflows, more precipitation and wild wind hindered occurrences of high O3 episodes. After the passing of the typhoon, the air below the 700 hPa atmospheric layer was warm and dry, and the downward airflows resumed. The low troposphere was filed with high concentration of O3 due to O3-rich air transported from the low stratosphere and strong photochemical reactions. It is noteworthy that O3 was mainly generated in the middle of the boundary layer (∼ 1000 m) instead of at the surface. High O3 levels remained in the residual layer at night, and would be transported to the surface by downward airflows or turbulence by the second day. Moreover, O3 can be accumulated and trapped on the ground due to the poor diffusion conditions because the vertical diffusion and horizontal diffusion were suppressed by downward airflows and light wind, respectively. The premature deaths attributed to O3 exposure in the YRD during the study period were 194.0, more than the casualties caused directly by the typhoons. This work has enhanced our understanding of how landfall typhoons affect O3 in the YRD and thus can be useful in forecasting O3 pollution in regions strongly influenced by typhoon activities.


2021 ◽  
Vol 21 (8) ◽  
pp. 5905-5917
Author(s):  
Kun Zhang ◽  
Ling Huang ◽  
Qing Li ◽  
Juntao Huo ◽  
Yusen Duan ◽  
...  

Abstract. In recent years, ozone pollution has become one of the most severe environmental problems in China. Evidence from observations have showed increased frequency of high O3 levels in suburban areas of the Yangtze River Delta (YRD) region. To better understand the formation mechanism of local O3 pollution and investigate the potential role of isoprene chemistry in the budgets of ROx (OH+HO2+RO2) radicals, synchronous observations of volatile organic compounds (VOCs), formaldehyde (HCHO), and meteorological parameters were conducted at a suburban site of the YRD region in 2018. Five episodes with elevated O3 concentrations under stagnant meteorological conditions were identified; an observation-based model (OBM) with the Master Chemical Mechanism was applied to analyze the photochemical processes during these high O3 episodes. The high levels of O3, nitrogen oxides (NOx), and VOCs facilitated strong production and recycling of ROx radicals with the photolysis of oxygenated VOCs (OVOCs) being the primary source. Our results suggest that local biogenic isoprene is important in suburban photochemical processes. Removing isoprene could drastically slow down the efficiency of ROx recycling and reduce the concentrations of ROx. In addition, the absence of isoprene chemistry could further lead to a decrease in the daily average concentrations of O3 and HCHO by 34 % and 36 %, respectively. Therefore, this study emphasizes the importance of isoprene chemistry in the suburban atmosphere, particularly with the participation of anthropogenic NOx. Moreover, our results provide insights into the radical chemistry that essentially drives the formation of secondary pollutants (e.g., O3 and HCHO) in suburban areas of the YRD region.


Chemosphere ◽  
2020 ◽  
Vol 239 ◽  
pp. 124678 ◽  
Author(s):  
Qiannan She ◽  
Myungje Choi ◽  
Jessica H. Belle ◽  
Qingyang Xiao ◽  
Jianzhao Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document