accumulation phase
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Shengyu Shi ◽  
Jiale Chen ◽  
Clarisse Bourdelle ◽  
Xiang Jian ◽  
Tomas Odstrcil ◽  
...  

Abstract The behavior of heavy/high-Z impurity tungsten (W) in the core of hybrid (high normalized beta β_N plasmas) scenario on EAST with ITER-like divertor (ILD) is analyzed. W accumulation is often observed and seriously degrades the plasma performance (Xiang Gao et al 2017 Nucl. Fusion 57 056021). The dynamics of the W accumulation process of a hybrid discharge are examined considering the concurrent evolution of the background plasma parameters. It turns out that the toroidal rotation and density peaking of the bulk plasma are usually large in the central region, which is particularly prone to the W accumulation. A time slice during the W accumulation phase is modeled, accounting for both neoclassical and turbulent transport components of W, through NEO with poloidal asymmetry effects induced by toroidal rotation, and TGLF, respectively. This modeling reproduces the experimental observations of W accumulation and identifies the neoclassical inward convection/pinch velocity of W due to the large density peaking of the bulk plasma and toroidal rotation in the central region as one of the main reasons for the W accumulation. In addition, the NEO+TGLF+STRAHL modeling can not only predict the core W density profile but also closely reconstruct the radiated information mainly produced by W in the experiment.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1609
Author(s):  
Eleftherios Touloupakis ◽  
Eleni G. Poloniataki ◽  
Martina Casciana ◽  
Demetrios F. Ghanotakis ◽  
Pietro Carlozzi

The synthesis of polyhydroxybutyrate (PHB) by photosynthetic non-sulfur bacteria is a potential approach for producing biodegradable plastics. In this work, acetate was used as a single carbon source to study the effect on PHB formation in Rhodopseudomonas sp. cultured in a cylindrical four-liter photobioreactor under semi-continuous mode. The cultivation process is divided into a symmetrical growth phase and a PHB accumulation phase separated temporally. The symmetrical growth phase (nutrient sufficient conditions) was followed by a sulfur-limited phase to promote PHB accumulation. The main novelty is the progressive lowering of the sulfur concentration into Rhodopseudomonas culture, which was obtained by two concomitant conditions: (1) sulfur consumption during the bacterial growth and (2) semi-continuous growth strategy. This caused a progressive lowering of the sulfur concentration into Rhodopseudomonas culturedue to the sulfur-free medium used to replace 2 L of culture (50% of the total) that was withdrawn from the photobioreactor at each dilution. The PHB content ranged from 9.26% to 15.24% of cell dry weight. At the steady state phase, the average cumulative PHB was >210 mg/L. Sulfur deficiency proved to be one of the most suitable conditions to obtain high cumulative PHB in Rhodopseudomonas culture.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 124
Author(s):  
Isaac J. Y. Schrock ◽  
Steven R. Fassnacht ◽  
Antonio-Juan Collados-Lara ◽  
William E. Sanford ◽  
Anna K. D. Pfohl ◽  
...  

The spatial characteristics and patterns of snow accumulation and ablation inform the amount of water stored and subsequently available for runoff and the timing of snowmelt. This paper characterizes the snow accumulation phase to investigate the spatiotemporal snow water equivalent (SWE) distribution by fitting a function to the trajectory plot of the standard deviation versus mean SWE across a domain. Data were used from 90 snow stations for a 34-year period across the Southern Rocky Mountains in the western United States. The stations were divided into sub-sets based on elevation, latitude, and the mean annual maximum SWE. The best function was a linear fit, excluding the first 35 mm of SWE. There was less variability with SWE data compared to snow depth data. The trajectory of the accumulation phase was consistent for most years, with limited correlation to the amount of accumulation. These trajectories are more similar for the northern portion of the domain and for below average snow years. This work could inform where to locate new stations, or be applied to other earth system variables.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sulaiman Khan ◽  
Habib Ullah Khan ◽  
Shah Nazir

In computer vision and artificial intelligence, text recognition and analysis based on images play a key role in the text retrieving process. Enabling a machine learning technique to recognize handwritten characters of a specific language requires a standard dataset. Acceptable handwritten character datasets are available in many languages including English, Arabic, and many more. However, the lack of datasets for handwritten Pashto characters hinders the application of a suitable machine learning algorithm for recognizing useful insights. In order to address this issue, this study presents the first handwritten Pashto characters image dataset (HPCID) for the scientific research work. This dataset consists of fourteen thousand, seven hundred, and eighty-four samples—336 samples for each of the 44 characters in the Pashto character dataset. Such samples of handwritten characters are collected on an A4-sized paper from different students of Pashto Department in University of Peshawar, Khyber Pakhtunkhwa, Pakistan. On total, 336 students and faculty members contributed in developing the proposed database accumulation phase. This dataset contains multisize, multifont, and multistyle characters and of varying structures.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1579
Author(s):  
Rana Salem ◽  
Moomen Soliman ◽  
Ahmed Fergala ◽  
Gerald F. Audette ◽  
Ahmed ElDyasti

With the adverse environmental ramifications of the use of petroleum-based plastic outweighing the challenges facing the industrialization of bioplastics, polyhydroxyalkanoate (PHA) biopolymer has gained broad interest in recent years. Thus, an efficient approach for maximizing polyhydroxybutyrate (PHB) polymer production in methanotrophic bacteria has been developed using the methane gas produced in the anaerobic digestion process in wastewater treatment plants (WWTPS) as a carbon substrate and an electron donor. A comparison study was conducted between two experimental setups using two different recycling strategies, namely new and conventional setups. The former setup aims to recycle PHB producers into the system after the PHB accumulation phase, while the latter recycles the biomass back into the system after the exponential phase of growth or the growth phase. The goal of this study was to compare both setups in terms of PHB production and other operational parameters such as growth rate, methane uptake rate, and biomass yield using two different nitrogen sources, namely nitrate and ammonia. The newly proposed setup is aimed at stimulating PHB accumulating type II methanotroph growth whilst enabling other PHB accumulators to grow simultaneously. The success of the proposed method was confirmed as it achieved highest recorded PHB accumulation percentages for a mixed culture community in both ammonia- and nitrate-enriched media of 59.4% and 54.3%, respectively, compared to 37.8% and 9.1% for the conventional setup. Finally, the sequencing of microbial samples showed a significant increase in the abundance of type II methanotrophs along with other PHB producers, confirming the success of the newly proposed technique in screening for PHB producers and achieving higher PHB accumulation.


2020 ◽  
Vol 226 (1) ◽  
pp. 1-15
Author(s):  
Felix Pütz ◽  
Fuhui Shen ◽  
Markus Könemann ◽  
Sebastian Münstermann

AbstractMany studies have examined the damage behaviour of dual-phase steels already. It is a topic of high interest, since understanding the mechanisms of damage during forming processes enables the production of steels with improved properties and damage tolerance. However, the focus was rarely on the comparison between representatives of this steel class, and the numerical simulation for the quantification of damage states was not thoroughly used. Therefore, this study compares the damage initiation and accumulation of two dual-phase steels (DP800 and DP1000), which are used in the automotive industry. Additionally, parameter sets of a phenomenological damage mechanics model with coupled damage evolution are calibrated for each material. The combined analysis reveals an earlier initiation of damage for the DP800, where the damage accumulation phase is prolonged. For DP1000 the damage nucleates only shortly before material failure. The material model is able to correctly predict the behaviour, while experimental analysis confirms the prediction via light optical and SEM metallography.


2020 ◽  
Vol 8 (2) ◽  
pp. 1.11-5
Author(s):  
Paul Hagelstein ◽  
Isabella Lackner ◽  
James Otto ◽  
Austin Perona ◽  
Robert Piziak

2020 ◽  
Vol 8 (6) ◽  
pp. 196-201
Author(s):  
Greg Samsa

As applied to investing for and during retirement, the popular financial press has promulgated two memes about the impact of market drops: (1) for those investing for retirement market drops aren’t problematic; and (2) for those in retirement market drops are.    We use simulation to illustrate the logic behind these memes, to demonstrate that they are mostly but not entirely true, and finally to restate them more precisely.  Although sequence of returns risk is not present during the accumulation phase as an investor plans for retirement, it can have a significant (and perhaps underestimated) impact during retirement.  This, however, can place the retiree in a predicament – namely, settle for lower returns and lower distributions during retirement or gamble on stocks.  However, it does not necessarily imply that retirees must abandon the expected returns associated with stocks, because of the ability to write deep-in-the-money covered call options, which harvest the expected market return (but no more than this) with limited variability.


2019 ◽  
Author(s):  
Mikio C. Aoi ◽  
Valerio Mante ◽  
Jonathan W. Pillow

AbstractRecent work has suggested that prefrontal cortex (PFC) plays a key role in context-dependent perceptual decision-making. Here we investigate population-level coding of decision variables in monkey PFC using a new method for identifying task-relevant dimensions of neural activity. Our analyses reveal that, in contrast to one-dimensional attractor models, PFC has a multi-dimensional code for decisions, context, and relevant as well as irrelevant sensory information. Moreover, these representations evolve in time, with an early linear accumulation phase followed by a phase with rotational dynamics. We identify the dimensions of neural activity associated with these phases, and show that they are not the product of distinct populations, but of a single population with broad tuning characteristics. Finally, we use model-based decoding to show that the transition from linear to rotational dynamics coincides with a sustained plateau in decoding accuracy, revealing that rotational dynamics in PFC preserve sensory as well as choice information for the duration of the stimulus integration period.


Sign in / Sign up

Export Citation Format

Share Document