land breeze
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 48)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 807 ◽  
pp. 150306
Author(s):  
Dandan Zhao ◽  
Jinyuan Xin ◽  
Weifeng Wang ◽  
Danjie Jia ◽  
Zifa Wang ◽  
...  

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 1-18
Author(s):  
Y.E.A. RAJ ◽  
B. AMUDHA

The diurnal variation of north east monsoon rainfall of coastal Tamil Nadu represented by four coastal stations Chennai Nungambakkam (Nbk), Chennai Meenambakkam (Mbk), Nagapattinam (Npt) and Pamban (Pbn)  was  studied in detail based on hourly rainfall data of rainy days only, for the period 1 Oct-31 Dec for the 47/48  year period 1969-2016/2017.  Mean Octet rainfall and its anomaly were computed for the 8 octets  00-03,…., 21-24 hrs of the day and the anomaly was tested for statistical significance. Various analysis for the individual months of Oct, Nov, Dec and the entire period Oct-Dec were separately conducted.  The basic technique of evolutionary histogram analysis supplemented by harmonic analysis of octet mean rainfall anomaly was used to detect the diurnal cycle signal. Two indices  named as  diurnal variation of  rainfall index and coefficient of mean absolute octet rainfall anomaly representing the intensity of diurnal variation  in dimensionless numbers were defined,  computed  and interpreted. The analysis based on the above techniques revealed that the diurnal signal which shows an early morning maximum and late afternoon minimum of octet rainfall is well defined in Oct, decreases in Nov and further decreases in Dec for all the 4 stations. Though the diurnal variation manifests a well defined pattern in Dec the signal is not statistically significant in most cases. For Nbk and Mbk there is a weak secondary peak of octet rainfall anomaly occurring in the forenoon and afternoon respectively in Oct and Dec suggesting the presence of semi-diurnal variation of rainfall. Stationwise, the diurnal signal is most well defined for each month/season in Pbn followed by Npt, Nbk and then Mbk.   The physical causes behind the diurnal signal and its decrease as the north east monsoon season advances from Oct to Dec have been deliberated. The well known feature of nocturnal maximum of oceanic convection influencing a coastal station with maritime climate and the higher saturation at the lower levels of the upper atmosphere in the early morning hours have been advanced as some of the causes. For the much more complex feature of decrease of diurnal signal with the  advancement of the season, the decrease of minimum surface temperature over coastal Tamil Nadu from Oct to Dec causing an early morning conceptual land breeze has been shown as one of the plausible causes  based on analysis of temperature and wind.  Scope for further work based on data from automatic weather stations, weather satellites and Doppler Weather Radars has been discussed.


2022 ◽  
Vol 22 (1) ◽  
pp. 419-439
Author(s):  
Lixing Shen ◽  
Chuanfeng Zhao ◽  
Xingchuan Yang ◽  
Yikun Yang ◽  
Ping Zhou

Abstract. The 2019 Australian mega fires were unprecedented considering their intensity and consistency. There has been much research on the environmental and ecological effects of these mega fires, most of which focused on the effect of huge aerosol loadings and the ecological devastation. Sea land breeze (SLB) is a regional thermodynamic circulation closely related to coastal pollution dispersion, yet few have looked into how it is influenced by different types of aerosols transported from either nearby or remote areas. Mega fires provide an optimal scenario of large aerosol emissions. Near the coastal site of Brisbane Archerfield during January 2020, when mega fires were the strongest, reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) showed that mega fires did release huge amounts of aerosols, making aerosol optical depth (AOD) of total aerosols, black carbon (BC) and organic carbon (OC) approximately 240 %, 425 % and 630 % of the averages in other non-fire years. Using 20 years' wind observations of hourly time resolution from a global observation network managed by the National Oceanic and Atmospheric Administration (NOAA), we found that the SLB day number during that month was only 4, accounting for 33.3 % of the multi-years' average. The land wind (LW) speed and sea wind (SW) speed also decreased by 22.3 % and 14.8 % compared with their averages respectively. Surprisingly, fire spot and fire radiative power (FRP) analysis showed that heating effects and aerosol emission of the nearby fire spots were not the main causes of the local SLB anomaly, while the remote transport of aerosols from the fire centre was mainly responsible for the decrease of SW, which was partially offset by the heating effect of nearby fire spots and the warming effect of long-range transported BC and CO2. The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contributed to the slump of LW. The remote transport of total aerosols was mainly caused by free diffusion, while the large-scale wind field played a secondary role at 500 m. The large-scale wind field played a more important role in aerosol transport at 3 km than at 500 m, especially for the gathered smoke, but free diffusion remained the major contributor. The decrease of SLB speed boosted the local accumulation of aerosols, thus making SLB speed decrease further, forming a positive feedback mechanism.


2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Jiaxin Liu ◽  
Xiaoquan Song ◽  
Wenrui Long ◽  
Yiyuan Fu ◽  
Long Yun ◽  
...  

The Doppler lidar system can accurately obtain wind profiles with high spatiotemporal resolution, which plays an increasingly important role in the research of atmospheric boundary layers and sea–land breeze. In September 2019, Doppler lidars were used to carry out observation experiments of the atmospheric wind field and pollutants in Shenzhen. Weather Research and Forecasting showed that the topography of Hongkong affected the sea breeze to produce the circumfluence flow at low altitudes. Two sea breezes from the Pearl River Estuary and the northeast of Hong Kong arrived at the observation site in succession, changing the wind direction from northeast to southeast. Based on the wind profiles, the structural and turbulent characteristics of the sea breeze were analyzed. The sea breeze front was accurately captured by the algorithm based on fuzzy logic, and its arrival time was 17:30 on 25 September. The boundary between the sea breeze and the return flow was separated by the edge enhancement algorithm. From this, the height of the sea breeze head (about 1100 m) and the thickness of the sea breeze layer (about 700 m) can be obtained. The fluctuated height of the boundary and the spiral airflow nearby revealed the Kelvin–Helmholtz instability. The influence of the Kelvin–Helmholtz instability could be delivered to the near-surface, which was verified by the spatiotemporal change of the horizontal wind speed and momentum flux. The intensity of the turbulence under the control of the sea breeze was significantly lower than that under the land breeze. The turbulent intensity was almost 0.1, and the dissipation rate was between 10−4 and 10−2 m2·s−3 under the land breeze. The turbulent intensity was below 0.05, and the dissipation rate was between 10−5 and 10−3 m2·s−3 under the sea breeze. The turbulent parameters showed peaks and large gradients at the boundary and the sea breeze front. The peak value of the turbulent intensity was around 0.3, and the dissipation rate was around 0.1 m2·s−3. The round-trip effect of sea–land breeze caused circulate pollutants. The recirculation factor was maintained at 0.5–0.6 at heights where the sea and land breeze alternately controlled (below 600 m), as well as increasing with a decreasing duration of the sea breeze. The factor exceeded 0.9 under the control of the high-altitude breeze (above 750 m). The convergence and rise of the airflow at the front led to collect pollutants, causing a sharp decrease in air quality when the sea breeze front passed.


MAUSAM ◽  
2022 ◽  
Vol 44 (3) ◽  
pp. 265-270
Author(s):  
SURENDRA KUMAR ◽  
P.V. PATKAR

Significant climatological features based on 329 Low Level Wind Shear (LLWS) reports from 1985 to 1989 at Bombay airport are presented, The monsoon season has the highest frequency of occurrence of LLWS mainly due to thunderstorms and strong gusty winds, Other than monsoon season, occurrence of LLWS is related to sea and land breeze and nocturnal increase of surface temperature during night. The preferred time of occurrence of LLWS is between 0000 to 0600 IST and 1800 to 240J IST. The simultaneous occurrence of strong and severe LL WS, low cloud ceiling and very poor visibility has an adverse effect on aircraft operations at Bombay airport during landing and take-off.


MAUSAM ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 719-728
Author(s):  
B. AMUDHA ◽  
P.A. SUBADRA ◽  
V.RADHIKA RANI
Keyword(s):  

Abstract Urban heat island (UHI) and sea-land breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting model with a single layer urban model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4-h and is strongest between 1200 and 1400 Local Time (UTC+8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: ∼20-km/ ∼1.5-km/ ∼3-h) with thermal vertical motions (∼1.5 m s−1) above the urban area and a SBC (horizontal/vertical/time scales: 6 - 7 km/ ∼1 km/ 2 - 3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) ∼5 km from the coast that penetrates ∼20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summer-time urban heating in coastal megacities, such as Shanghai.


MAUSAM ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 339-346
Author(s):  
S.C. Kar ◽  
N. Ramanathan

The air flow over the south Andaman island is simulated using a three dimensional numerical meso-scale model. Port Blair observations are used as initial data. The surface orography, soil moisture soil albedo variations and vegetations effects are included in the model. The combined effect of these factors on the development of sea/land breeze circulations is obtained quantitatively. The model simulated results are compared with the available observations. The principal results obtained are : (1) The meso-scale circulations induced by the differential heating of the island were intensified by topography. (2) The ground vegetative cover trans- port higher amount of turbulent heat fluxes: to the atmosphere and the meso-circulations appeared with higher intensities. (3) If we Include the lateral variations of flux with topographic and coastal asymmetries the induced meso-scale circulations appeared with different intensities along meridional direction and the inland penetration distances varied in y direction. The maximum Inland penetration of sea breeze was seen, where the inland was widest and terrain height was maximum. Stronger sea breeze was simulated over the central/northern parts of the island.


MAUSAM ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 184-186
Author(s):  
Y. E. A. RAJ ◽  
P. NAGESHWARI
Keyword(s):  

MAUSAM ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 75-86
Author(s):  
HAMZA V ◽  
C. A. BABU

Features of sea and land breezes, surface fluxes and drag coefficient over Cochin are studied using more than 300 daily observations of air temperature, wind speed and direction data. The duration and intensity of sea breeze circulation vary with the rain or cloud as it reduces the differential heating. Onset of sea breeze is early in summer season for the near equatorial station compared to winter season. Cessation is almost same for all seasons and is around 1900 hours. The sea breeze circulation is almost westerly and land breeze circulation is almost easterly in all the seasons. It is found that in most of the cases, the temperature and wind speed decreases at the time of onset of sea breeze and turning of wind direction with height becomes counter clockwise (backing) during the transition period from land breeze to sea breeze. In all seasons, the momentum flux is directed downward. High values of momentum flux were found during the presence of sea breeze in pre-monsoon season. Average sensible heat flux is directed upward during the entire period and during nighttime it is almost zero in the winter and monsoon seasons. The intensity of momentum flux decreases during onset and cessation of sea breeze for all the cases. The cold air advection associated with the sea breeze results in the decrease of sensible heat flux at the time of onset of sea breeze. Averaged surface momentum and sensible flux patterns resemble closely to the instantaneous pattern for all the seasons. Generally, sea breeze is stronger than land breeze in all the seasons. Accordingly, the drag coefficient power relationship with wind is different for sea breeze and land breeze circulations.Key words – Sea breeze circulation, Monsoon boundary layer, Surface fluxes, Drag coefficient, Diurnal variation.


Sign in / Sign up

Export Citation Format

Share Document