scholarly journals Uncertainties in Kelvin waves in ECMWF analyses and forecasts: insights from Aeolus observing system experiments

Author(s):  
N. Žagar ◽  
M. Rennie ◽  
L. Isaksen
Keyword(s):  
2018 ◽  
Vol 980 ◽  
pp. 012003
Author(s):  
M A Tsoy ◽  
S G Skripkin ◽  
P A Kuibin ◽  
S I Shtork ◽  
S V Alekseenko

2011 ◽  
Vol 687 ◽  
pp. 194-208 ◽  
Author(s):  
Andrew McC. Hogg ◽  
William K. Dewar ◽  
Pavel Berloff ◽  
Marshall L. Ward

AbstractThe interaction of a dipolar vortex with topography is examined using a combination of analytical solutions and idealized numerical models. It is shown that an anticyclonic vortex may generate along-topography flow with sufficient speeds to excite hydraulic control with respect to local Kelvin waves. A critical condition for Kelvin wave hydraulic control is found for the simplest case of a 1.5-layer shallow water model. It is proposed that in the continuously stratified case this mechanism may allow an interaction between low mode vortices and higher mode Kelvin waves, thereby generating rapidly converging isopycnals and hydraulic jumps. Thus, Kelvin wave hydraulic control may contribute to the flux of energy from mesoscale to smaller, unbalanced, scales of motion in the ocean.


2005 ◽  
Vol 18 (13) ◽  
pp. 2441-2459 ◽  
Author(s):  
J. Zavala-Garay ◽  
C. Zhang ◽  
A. M. Moore ◽  
R. Kleeman

Abstract The possibility that the tropical Pacific coupled system linearly amplifies perturbations produced by the Madden–Julian oscillation (MJO) is explored. This requires an estimate of the low-frequency tail of the MJO. Using 23 yr of NCEP–NCAR reanalyses of surface wind and Reynolds SST, we show that the spatial structure that dominates the intraseasonal band (i.e., the MJO) also dominates the low-frequency band once the anomalies directly related to ENSO have been removed. This low-frequency contribution of the intraseasonal variability is not included in most ENSO coupled models used to date. Its effect in a coupled model of intermediate complexity has, therefore, been studied. It is found that this “MJO forcing” (τMJO) can explain a large fraction of the interannual variability in an asymptotically stable version of the model. This interaction is achieved via linear dynamics. That is, it is the cumulative effect of individual events that maintains ENSOs in this model. The largest coupled wind anomalies are initiated after a sequence of several downwelling Kelvin waves of the same sign have been forced by τMJO. The cumulative effect of the forced Kelvin waves is to persist the (small) SST anomalies in the eastern Pacific just enough for the coupled ocean–atmosphere dynamics to amplify the anomalies into a mature ENSO event. Even though τMJO explains just a small fraction of the energy contained in the stress not associated with ENSO, a large fraction of the modeled ENSO variability is excited by this forcing. The characteristics that make τMJO an optimal stochastic forcing for the model are discussed. The large zonal extent is an important factor that differentiates the MJO from other sources of stochastic forcing.


Author(s):  
Qingyang Song ◽  
Hidenori Aiki

AbstractIntraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30 days, 50 days and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30-day and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally-trapped Kelvin waves along the African coast are identified by along-shore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.


2003 ◽  
Vol 30 (4) ◽  
Author(s):  
Masatomo Fujiwara ◽  
Masayuki K. Yamamoto ◽  
Hiroyuki Hashiguchi ◽  
Takeshi Horinouchi ◽  
Shoichiro Fukao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document