Continuous recording of viscoelastic relaxation processes at constant ultrasonic frequency due to wave‐induced fluid flow in a microporous carbonate rock

Author(s):  
Davide Geremia ◽  
Christian David
Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. D1-D11
Author(s):  
Elliot J. H. Dahl ◽  
Kyle T. Spikes

Wave-induced fluid flow (WIFF) can significantly alter the effective formation velocities and cause increasing waveform dispersion and attenuation. We have used modified frame moduli from the theory of Chapman together with the classic Biot theory to improve the understanding of local- and global-flow effects on dipole flexural wave modes in boreholes. We investigate slow and fast formations with and without compliant pores, which induce local flow. The discrete wavenumber summation method generates the waveforms, which are then processed with the weighted spectral semblance method to compare with the solution of the period equation. We find compliant pores to decrease the resulting effective formation P- and S-wave velocities, that in turn decrease the low-frequency velocity limit of the flexural wave. Furthermore, depending on the frequency at which the local-flow dispersion occurs, different S-wave velocity predictions from the flexural wave become possible. This issue is investigated through changing the local-flow critical frequency. Sensitivity analyses of the flexural-wave phase velocity to small changes in WIFF parameters indicate the modeling to be mostly sensitive to compliant pores in slow and fast formations.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. N1-N12 ◽  
Author(s):  
Beatriz Quintal ◽  
Stefan M. Schmalholz ◽  
Yuri Y. Podladchikov

The impact of changes in saturation on the frequency-dependent reflection coefficient of a partially saturated layer was studied. Seismic attenuation and velocity dispersion in partially saturated (i.e., patchy saturated) poroelastic media were accounted for by using the analytical solution of the 1D White’s model for wave-induced fluid flow. White’s solution was applied in combination with an analytical solution for the normal-incidence reflection coefficient of an attenuating layer embedded in an elastic or attenuating background medium to investigate the effects of attenuation, velocity dispersion, and tuning on the reflection coefficient. Approximations for the frequency-dependent quality factor, its minimum value, and the frequency at which the minimum value of the quality factor occurs were derived. The approximations are valid for any two alternating sets of petrophysical parameters. An approximation for the normal-incidence reflection coefficient of an attenuating thin (compared to the wavelength) layer was also derived. This approximation gives insight into the influence of contrasts in acoustic impedance and/or attenuation on the reflectivity of a thin layer. Laboratory data for reflections from a water-saturated sand layer and from a dry sand layer were further fit with petrophysical parameters for unconsolidated sand partially saturated with water and air. The results showed that wave-induced fluid flow can explain low-frequency reflection anomalies, which are related to fluid saturation and can be observed in seismic field data. The results further indicate that reflection coefficients of partially saturated layers (e.g., hydrocarbon reservoirs) can vary significantly with frequency, especially at low seismic frequencies where partial saturation may often cause high attenuation.


2014 ◽  
Vol 57 (6) ◽  
pp. 1020-1030 ◽  
Author(s):  
Jing Ba ◽  
Lin Zhang ◽  
WeiTao Sun ◽  
ZhaoBing Hao

Sign in / Sign up

Export Citation Format

Share Document