Connection Between a Subcontinental Plume and the Mid‐Lithospheric Discontinuity Leads to Fast and Intense Craton Lithospheric Thinning

Tectonics ◽  
2021 ◽  
Vol 40 (9) ◽  
Author(s):  
Ya‐Nan Shi ◽  
Zhong‐Hai Li ◽  
Ling Chen ◽  
Jason P. Morgan
2021 ◽  
Author(s):  
Mohamed Sobh ◽  
Khaled Zahran ◽  
Nils Holzrichter ◽  
Christian Gerhards

<p><span>Widespread Cenozoic volcanisms in the Arabian shield including “Harrats” have been referring to lithospheric thinning and/or mantle plume activity as a result of Red Sea rift-related extension.</span></p><p><span>A fundamental key in understanding the deriving mechanism of these volcanic activities and its relationship to 2007-2009 seismic swarms required a reliable model of the present-day lithospheric thermo-chemical structure.</span></p><p><span>In this work, we modeled crustal and lithospheric thickness variation as well as the variations in thermal, composition, seismic velocity, and density of the lithosphere beneath the Arabian shield within a thermodynamically self - consistent framework.</span></p><p><span>The resulting thermal and density structures show large variations, revealing strong asymmetry between the Arabian shield and Arabian platform within the Arabian Plate.</span></p><p><span>We model negative density anomalies associated with the hot mantle beneath Harrats, which coincides with the modelled lithosphere thinned (~ 65 km) as a result of the second stage of lithospheric thinning following the initial Red Sea extension.</span></p>


2003 ◽  
Vol 40 (6) ◽  
pp. 853-864 ◽  
Author(s):  
J H Sevigny ◽  
R J Thériault

Mineral compositions, geochemical analyses, and Sr–Nd isotopic compositions are reported for alkaline and calc-alkaline lamprophyres collected along the southern margin of the Valhalla Complex, southeastern British Columbia. The lamprophyres were emplaced during Eocene extension and lithospheric thinning associated with tectonic denudation of the Valhalla Complex. SiO2 contents range from 44.4–51.6 wt.%, K2O from 1.3–3.7 wt.%, and volatile contents (H2O + CO2 + SO3) from 0.8–4.6 wt.%. MgO and Cr contents are 9.5–7.6 wt.% and 540–130 ppm, respectively, for samples with Mg#s between 0.69 and 0.65. Chrondrite-normalized rare-earth element patterns are strongly fractionated with Cen = 120–375 and Ybn = 8.4–12.7. Alkaline lamprophyres contain biotite ± kaersutite ± calcic plagioclase and exhibit a limited range in initial 87Sr/86Sr (0.7051–0.7057), initial εNd (–3.7 to –4.3), and TDM (766–796 Ma). Calc-alkaline lamprophyres contain F-rich phlogopite and sodic plagioclase, and exhibit a wider range in initial 87Sr/86Sr (0.7064–0.7090), initial εNd (–6.3 to –11.9), and TDM (917–1,614 Ma). Alkaline lamprophyres are interpreted as uncontaminated melts derived from a long-term, volatile, and incompatible element-enriched mantle reservoir. Mantle enrichment coincided with continental rifting of western North America (ca. 760 Ma). The enriched mantle reservoir remained isolated for ~700 Ma. Lamprophyres were generated by partial melting of the mantle reservoir in response to adiabatic decompression and lithospheric thinning during Eocene extension.


2012 ◽  
Vol 51 ◽  
pp. 45-62 ◽  
Author(s):  
Orhan Karsli ◽  
Abdurrahman Dokuz ◽  
İbrahim Uysal ◽  
Murat Ketenci ◽  
Bin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document