Thermal Imaging of the Lithosphere beneath Arabian Shield and Implications for "Harrats" Volcanic Field

Author(s):  
Mohamed Sobh ◽  
Khaled Zahran ◽  
Nils Holzrichter ◽  
Christian Gerhards

<p><span>Widespread Cenozoic volcanisms in the Arabian shield including “Harrats” have been referring to lithospheric thinning and/or mantle plume activity as a result of Red Sea rift-related extension.</span></p><p><span>A fundamental key in understanding the deriving mechanism of these volcanic activities and its relationship to 2007-2009 seismic swarms required a reliable model of the present-day lithospheric thermo-chemical structure.</span></p><p><span>In this work, we modeled crustal and lithospheric thickness variation as well as the variations in thermal, composition, seismic velocity, and density of the lithosphere beneath the Arabian shield within a thermodynamically self - consistent framework.</span></p><p><span>The resulting thermal and density structures show large variations, revealing strong asymmetry between the Arabian shield and Arabian platform within the Arabian Plate.</span></p><p><span>We model negative density anomalies associated with the hot mantle beneath Harrats, which coincides with the modelled lithosphere thinned (~ 65 km) as a result of the second stage of lithospheric thinning following the initial Red Sea extension.</span></p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Alessio Sanfilippo ◽  
Camilla Sani ◽  
Najeeb M. A. Rasul ◽  
Ian C. F. Stewart ◽  
Luigi Vigliotti ◽  
...  

Volcanism in the western part of the Arabian plate resulted in one of the largest alkali basalt provinces in the world, where lava fields with sub-alkaline to alkaline affinity are scattered from Syria and the Dead Sea Transform Zone through western Saudi Arabia to Yemen. After the Afar plume emplacement (∼30 Ma), volcanism took place in Yemen and progressively propagated northward due to Red Sea rifting-related lithospheric thinning (initiated ∼27–25 Ma). Few lava fields were emplaced during the Mesozoic, with the oldest 200 Ma volcanic activity recorded in northern Israel. We report results from volcanic pipes in the Marthoum area, east of Harrat Uwayrid, where over a hundred pipes occupy a stratigraphic level in the early Ordovician Saq sandstones. Most of them are circular or elliptical features marked by craters aligned along NW-SE fractures in the sandstone resulting from phreatomagmatic explosions that occurred when rising magma columns came in contact with the water table in the porous sandstone host. These lavas have Sr-Pb-Nd-Hf isotopic compositions far from the Cenozoic Arabian alkaline volcanism field, being considerably more enriched in Nd-Hf and Pb isotopes than any other Arabian Plate lava ever reported. New K-Ar dating constrains their age from Late Cretaceous to Early Eocene, thus anticipating the Afar plume emplacement and the Red Sea rift. Basalt geochemistry indicates that these volcanic eruptions formed from low-degree partial melting of an enriched lithospheric mantle source triggered by local variations in the asthenosphere-lithosphere boundary. This mantle source has a composition similar to the HIMU-like enriched isotopic component reported in the East African Rift and considered to represent the lowermost lithospheric mantle of the Nubian Shield. The generated melt, mixed in different proportions with melt derived from a depleted asthenosphere, produces the HIMU-like character throughout the Cenozoic Arabian alkaline volcanism. Although apparently hidden, this enriched lithospheric component is therefore ubiquitous and widespread in the cratonic roots of the African and Arabian subcontinental mantle.


GeoArabia ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 175-204 ◽  
Author(s):  
Moujahed I. Al-Husseini ◽  
M. Dia Mahmoud ◽  
Robley K. Matthews

ABSTRACT The Miocene Kareem Formation in the Egyptian Gulf of Suez, and its equivalent formations throughout the Red Sea (250–550 m thick), contain one of the most important petroleum reservoirs in these highly faulted rift basins. They present a difficult exploration target, particularly over the shelves of the sparsely explored Red Sea for several reasons: (1) water depth exceeds one kilometer, (2) they underlie thick evaporites (including salt exceeding one kilometer in thickness), (3) they are difficult to image by conventional seismic techniques, and (4) their lithology is laterally variable and difficult to predict (anhydrite, carbonate, sandstone, shale and marl). The target Red Sea formations are best controlled by boreholes in the Gulf of Suez, where the Kareem Formation and its members are characterized by various synonymous units. A review of representative data and interpretations shows that the formation and its members are better understood when considered as a third-order, transgressive-regressive (T-R) depositional sequence, named the Kareem Sequence in the Middle East Geologic Time Scale (ME GTS). The Sequence is bounded above by the Belayim Sequence Boundary (Sub-Belayim Unconformity) and below by the Kareem Sequence Boundary (Sub-Kareem Unconformity), both corresponding to major sea-level lowstands. It contains the Arabian Plate Langhian Maximum Flooding Surface Neogene 30 (MFS Ng30) at the top of the Kareem Maximum Flooding Interval (MFI). Its lower Rahmi Member forms the majority of the transgressive systems tract (TST). The Kareem MFI and regressive systems tract (RST or HST) occur within the upper Shagar Member. The paleontology of the Formation is characterized by Planktonic Foraminiferal Zone N9 and in recent papers also N8, and Calcareous Nannofossil Biozone NN5, but the Formation’s assignment to Miocene stages (Burdigalian, Langhian and Serravallian) is unresolved in the literature. In this paper, the Kareem Sequence is interpreted in terms of Kareem subsequences 1 to 6. At semi-regional scales (10s of km), the older three are each represented by an anhydrite bed (Rahmi Anhydrite 1 to 3, each c. 10 m thick) overlain by deep-marine deposits (shale, marl and carbonate, 10s of meters thick). Subsequences 4 to 6 are represented in El Morgan field (Kareem A to C units), and in representative boreholes, by three deep-marine shale/marl units, each of which is overlain by a regressive shallow-marine sandstone unit. The Kareem Sequence is correlated to third-order orbital sequence DS3 1.1 with a depositional period of ca. 2.43 million years between ca. 16.1 and 13.7 million years before present (Ma), or numerically the latest Burdigalian, Langhian and earliest Serravallian (Langhian: 15.97–13.65 Ma in GTS 2004; 15.97–13.82 Ma in GTS 2009). The six subsequences are correlated to the orbital 405,000 year eccentricity cycle (referred to as Stratons 40–35 or DS4 1.1.1 to 1.1.6). The older three subsequences form the transgressive systems tract; the fourth contains the maximum flooding interval MFI (ca. 14.9–14.7 Ma) in its lower part. The regressive systems tract starts in the upper part of the fourth subsequence and encompasses subsequences 5 and 6. The orbital architecture of the Sequence provides a simplified framework for predicting lithology and reservoir development. The six Kareem subsequences carry the orbital-forcing glacio-eustatic signal. During low eccentricity, Antarctic ice-making and global sea-level drops, the northernmost Gulf of Suez and Bab Al Mandeb Strait restricted marine circulation in the Gulf and Red Sea rift basins. The resulting evaporitic setting was associated with the deposition of the Rahmi Anhydrite 1 to 3 beds and exposure over paleohighs. The deeper-marine deposits above the three Rahmi Anhydrite beds, and those of subsequences 4 to 6 reflect high eccentricity, Antarctic ice-melting, global sea-level rises, pluvial conditions at low latitudes (10–30oN), and open-marine circulation in the Red Sea. During pluvial periods, fluvio-deltaic systems prevailed over the mountainous rift shoulders and coastal plains and carried massive clastics into the Gulf and Red Sea Basins.


2008 ◽  
Vol 113 (B10) ◽  
Author(s):  
Samantha E. Hansen ◽  
James B. Gaherty ◽  
Susan Y. Schwartz ◽  
Arthur J. Rodgers ◽  
Abdullah M. S. Al-Amri

2021 ◽  
pp. 1-18
Author(s):  
Shehata Ali ◽  
Abdullah S. Alshammari

Abstract The Arabian Shield of Saudi Arabia represents part of the Arabian–Nubian Shield and forms an exposure of juvenile continental crust on the eastern side of the Red Sea rift. Gabbroic intrusions in Saudi Arabia constitute a significant part of the mafic magmatism in the Neoproterozoic Arabian Shield. This study records the first detailed geological, mineralogical and geochemical data for gabbroic intrusions located in the Gabal Samra and Gabal Abd areas of the Hail region in the Arabian Shield of Saudi Arabia. Geological field relations and investigations, supported by mineralogical and geochemical data, indicate that the gabbroic intrusions are generally unmetamorphosed and undeformed, and argue for their post-collisional emplacement. Their mineralogical and geochemical features reveal crystallization from hydrous, mainly tholeiitic, mafic magmas with arc-like signatures, which were probably inherited from the previous subduction event in the Arabian–Nubian Shield. The gabbroic rocks exhibit sub-chondritic Nb/U, Nb/Ta and Zr/Hf ratios, revealing depletion of their mantle source. Moreover, the high ratios of (Gd/Yb)N and (Dy/Yb)N indicate that their parental mafic melts were derived from a garnet-peridotite source with a garnet signature in the mantle residue. This implication suggests that the melting region was at a depth exceeding ∼70–80 km at the garnet stability field. They have geochemical characteristics similar to other post-collisional gabbros of the Arabian–Nubian Shield. Their origin could be explained by adiabatic decompression melting of depleted asthenosphere that interacted during ascent with metasomatized lithospheric mantle in an extensional regime, likely related to the activity of the Najd Fault System, at the end of the Pan-African Orogeny.


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


2021 ◽  
Author(s):  
Estelle Delouche ◽  
Laurent Stehly

<p>Our aim is to monitor the temporal evolution of the crust in Greece, with a particular focus on the Gulf of Corinth.  Indeed, Greece is one of the most exposed country to earthquakes in Europe. The Gulf of Corinth,  is known for its fast extension rate of about 15 mm/yr in the western part and 10mm/yr in the eastern part. This fast extension is associated with recurrent seismic swarms and by a few destructive earthquakes. This seismicity is likely the result of a combination of multiple driving processes including fluid migration at depth.</p><p>In the present work, we use seismic noise recorded from 2010 to 2020 by all seismic stations deployed in Greece, and in particular by the dense Corinth Rift Laboratory network, to compute the seismic velocity variation (dv/v) in several subregions. By comparing the result obtained at different periods, we are able to distinguish the temporal evolution of the upper, mid and lower crust. This temporal evolution is compared to the seismicity of the Gulf of Corinth.</p>


2021 ◽  
Author(s):  
Osman Abdullatif ◽  
Mutasim Osman ◽  
Mazin Bashri ◽  
Ammar Abdlmutalib ◽  
Mohamed Yassin

Abstract Siliciclastic sediments represent important lithological unit of the Red Sea coastal plain. Their subsurface equivalents are important targets of groundwater aquifer and hydrocarbon reservoirs in the region. The lithofacies of the modern fluvial deltaic system has several distinct geomorphic units and sub-environments such as alluvial, fluvial, delta plain, aeolian, intertidal, coastal sabkha and eustuarine sediments. This study intends to characterize the lithofacies and the depositional environments and to produce an integrated facies model for this modern fluvial-deltaic system. The study might provide a valuable modern analog to several important subsurface Neogene formations that act as important hydrocarbon reservoirs and groundwater aquifers. The study integrates information and data obtained from landsats, maps and detailed field observation and measurements of facies analysis of the fluvial and deltaic along traveses from the Arabian Shield to the Red Sea coast. The lithofacies sediment analysis revealed four main lithofacies associations namely lithofacies A,B,C ad D. Lithoacies Associations A, which represents the oldest unit is dominated by coarse gravel with minor sands facies. While the lithofacies B is dominated byfine gravel and sand lithofacies, occasionally pebbly, vary from horizontal, planar to massive sands with minor laminated to massive silts and mud facies. The lithofacies in A and B show lateral proximal to distal variation as well as characteristic vertical stacking patterns. The Facies Association A and B indicates a change in fluvial depositional styles from gravelly alluvial fans to gravelly sandy fluvial systems. The lithofacies association C represents the recent fluvial system which consists of minor gravel lag deposits associated maily with various sand lithofacies of planner, horizontal and massive sand associated with massive and limainted sand and mud lithofacies. The lithofacies Association D is dominated with Barchan sand dunes local interfigger with muddy iinterdunes and sand sheets. Lithofacies D occupies rather more distal geomporphic position of the fluvial deltaic system that is adjace to coastal sabkha. The lithofacies associations described here document the evolution and development of the coastal plain sediments through space and time under various autocyclic and allocyclic controls. This included the tectonics and structural development associated with the Red Sea rifting and opening since the Oligocene – Miocene time. Others controls include the evolution of the Arabian shield (provenance) and the coastal plain through space and time as controlled by tectonics, sediment supply, climate and locally by autocyclic environmental This study might be beneficial for understanding the controls and stratigraphic evolution of the Red Sea region and will be of great value for reservoir and aquifer characterization, development and management. This modern analog model can also help in providing geological baseline information that would be beneficial for understanding similar ancient fluvial deltaic sediments. The study might provide guides and leads to understand the subsurface facies, stratigraphic architecture and heterogeneity of any potential groundwater aquifers and hydrocarbon reservoirs.


2021 ◽  
Author(s):  
Tanghua Li ◽  
Stephen Chua ◽  
Nicole Khan ◽  
Patrick Wu ◽  
Benjamin Horton

<p>Holocene relative sea-level (RSL) records from regions distal from ice sheets (far-field) are commonly characterized by a mid-Holocene highstand, when RSL reached higher than present levels. The magnitude and timing of the mid-Holocene highstand varies spatially due to hydro-isostatic processes including ocean syphoning and continental levering. While there are open questions regarding the timing, magnitude and source of ice-equivalent sea level in the middle to late Holocene.</p><p>Here, we compare Glacial Isostatic Adjustment (GIA) model predictions to a standardized database of sea-level index points (SLIPs) from Southeast Asia where we have near-complete Holocene records. The database has more than 130 SLIPs that span the time period from ~9.5 ka BP to present. We investigate the sensitivity of mid-Holocene RSL predictions to GIA parameters, including the lateral lithospheric thickness variation, mantle viscosity (both 1D and 3D), and deglaciation history from different ice sheets (e.g., Laurentide, Fennoscandia, Antarctica).</p><p>We compute gravitationally self-consistent RSL histories for the GIA model with time dependent coastlines and rotational feedback using the Coupled Laplace-Finite Element Method. The preliminary results show that the timing of the highstand is mainly controlled by the deglaciation history (ice-equivalent sea level), while the magnitude is dominated by Earth parameters (e.g., lithospheric thickness, mantle viscosity). We further investigate whether there is meltwater input during middle to late Holocene and whether the RSL records from Southeast Asia can reveal the meltwater source, like Antarctica.</p>


Sign in / Sign up

Export Citation Format

Share Document