scholarly journals Fast and slow spreading ridges: Structure and hydrothermal activity, ultramafic topographic highs, and CH4output

1993 ◽  
Vol 98 (B6) ◽  
pp. 9643 ◽  
Author(s):  
Henri Bougault ◽  
Jean-Luc Charlou ◽  
Yves Fouquet ◽  
Hubert D. Needham ◽  
Nathalie Vaslet ◽  
...  
2021 ◽  
Author(s):  
Lars Rüpke ◽  
Zhikui Guo ◽  
Sven Petersen ◽  
Christopher German ◽  
Benoit Ildefonse ◽  
...  

Abstract Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges1,2, likely due to more pronounced tectonic faulting creating stable preferential fluid pathways3,4. The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault5-7. It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment5,10 but that circulation mode is thermodynamically unfavorable11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.


2020 ◽  
Author(s):  
Claire Aupart ◽  
Vera Schlindwein ◽  
Yehuda Ben-Zion ◽  
François Renard ◽  
Bjorn Jamtveit

2015 ◽  
Vol 405 ◽  
pp. 63-81 ◽  
Author(s):  
Froukje M. van der Zwan ◽  
Colin W. Devey ◽  
Nico Augustin ◽  
Renat R. Almeev ◽  
Rashad A. Bantan ◽  
...  

Geologos ◽  
2015 ◽  
Vol 21 (4) ◽  
pp. 207-231 ◽  
Author(s):  
Jakub Ciazela ◽  
Juergen Koepke ◽  
Henry J.B. Dick ◽  
Andrzej Muszynski

Abstract The mantle is the most voluminous part of the Earth. However, mantle petrologists usually have to rely on indirect geophysical methods or on material found ex situ. In this review paper, we point out the in-situ existence of oceanic core complexes (OCCs), which provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow-spreading ridges. OCCs are a common structure in oceanic crust architecture of slow-spreading ridges. At least 172 OCCs have been identified so far and we can expect to discover hundreds of new OCCs as more detailed mapping takes place. Thirty-two of the thirty-nine OCCs that have been sampled to date contain peridotites. Moreover, peridotites dominate in the plutonic footwall of 77% of OCCs. Massive OCC peridotites come from the very top of the melting column beneath ocean ridges. They are typically spinel harzburgites and show 11.3–18.3% partial melting, generally representing a maximum degree of melting along a segment. Another key feature is the lower frequency of plagioclase-bearing peridotites in the mantle rocks and the lower abundance of plagioclase in the plagioclase-bearing peridotites in comparison to transform peridotites. The presence of plagioclase is usually linked to impregnation with late-stage melt. Based on the above, OCC peridotites away from segment ends and transforms can be treated as a new class of abyssal peridotites that differ from transform peridotites by a higher degree of partial melting and lower interaction with subsequent transient melt.


Sign in / Sign up

Export Citation Format

Share Document