Detachment-parallel recharge explains high discharge fluxes at the TAG hydrothermal field

Author(s):  
Lars Rüpke ◽  
Zhikui Guo ◽  
Sven Petersen ◽  
Christopher German ◽  
Benoit Ildefonse ◽  
...  

Abstract Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges1,2, likely due to more pronounced tectonic faulting creating stable preferential fluid pathways3,4. The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault5-7. It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment5,10 but that circulation mode is thermodynamically unfavorable11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.

1992 ◽  
Vol 29 (9) ◽  
pp. 1928-1936 ◽  
Author(s):  
James M. Hall

The results of drilling near the spreading-ridge-type, volcanic-hosted, massive sulfide deposits of Agrokipia, Cyprus, are described. Mineralization and associated argillic hydrothermal alteration occur over intervals of 5–130 m and at depths of 80–230 m beneath the original surface of the oceanic crust. Mineralization occurs in massive flows that probably represent a locally ponded sequence up to 300 m thick. Abundant glass–aphanitic basalt transitions are present from about 100 m below the surface of the ponded sequence, with glass abundances locally reaching 60% of the section. A novel hypothesis, involving the presence of active, high-temperature hydrothermal vents beneath the cooling ponded sequence, with the passage of hydrothermal fluids through the still molten lava, is proposed to account for the observations. While this hypothesis is reasonable, the inferred processes have not, as yet, been demonstrated under either laboratory or field conditions. The seafloor expression of this system was probably one of widely distributed, low-temperature, fluid emission over the surface of a lava pond in the axial graben of a spreading ridge.


1991 ◽  
Vol 28 (11) ◽  
pp. 1699-1730 ◽  
Author(s):  
T. J. Barrett ◽  
W. H. MacLean ◽  
S. Cattalani ◽  
L. Hoy ◽  
G. Riverin

The Ansil massive sulfide deposit occurs at the contact of the underlying Northwest Rhyolite and the overlying Rusty Ridge Andesite, in the lower part of the Central Mine sequence of the Blake River Group. The orebody, which is roughly ellipsoidal in outline and up to 200 m × 150 m across, contained reserves of 1.58 Mt of massive sulfide grading 7.2% Cu, 0.9% Zn, 1.6 g/t Au, and 26.5 g/t Ag. Production began in 1989. Least-altered host rocks are low-K basaltic andesites and low-K rhyolites. These rocks have Zr/Y ratios of ~5 and LaN/YbN ratios of ~2.3, typical of tholeiitic volcanic rocks, although their major-element chemistry is transitional between tholeiitic and calc-alkaline volcanic rocks.The Ansil deposit, which dips ~50° east, is a single orebody comprising two main massive sulfide lenses (up to ~35 m thick) connected laterally via a thinner blanket of massive sulfides, with thin discontinuous but conformable massive magnetite units at the base and top of the orebody. Sulfide ore consists of massive to banded pyrrhotite–chalcopyrite. In the downplunge lens, up to 10 m of massive magnetite are capped by up to 10 m of massive sulfide. Finely banded cherty tuff, with sphalerite–pyrite–chalcopyrite, forms a discontinuous fringe to the deposit.The two main lenses of massive sulfide have the highest contents of Cu, Ag, and Au and are thought to have formed in areas of major hydrothermal input. Altered feeder zones contain either chlorite + chalcopyrite + pyrrhotite ± magnetite, or chlorite + magnetite ± sulfides. Footwall mineralization forms semiconformable zones ~5–10 m thick that directly underlie the orebody and high-angle pipelike zones that extend at least 50 m into the footwall. Ti–Zr–Al plots indicate that almost all altered footwall rocks were derived from a homogeneous rhyolite precursor. Hanging-wall andesites were also altered. Despite some severe alteration, all initial volcanic rock compositions can be readily identified, and thus mass changes can be calculated. Silica has been both significantly added or removed from the footwall, whereas K has been added except in feeder pipes. Oxygen-isotope compositions up to at least 50 m into the hanging wall and footwall are typically depleted in δ18O by 2–6‰. These rocks have gained Fe + Mg and lost Si. Altered samples in general range from light-rare-earth-element (REE) depleted to light-REE enriched, although some samples exhibit little REE modification despite strong alkali depletion. Mineralized volcanic rocks immediately below the orebody are enriched in Eu (as are some Cu-rich sulfides in the orebody).Contact and petrographic relations generally suggest that the main zone of massive magnetite formed by replacement of cp–po-rich sulfides, although local relations are ambiguous. Magnetite formation may reflect waning hydrothermal activity, during which fluids mixed with seawater and became cooler and more oxidized. Cu-rich feeder pipes that cut magnetite-rich footwall indicate a renewal of Cu-sulfide mineralization after magnetite deposition. Chloritic zones with disseminated sulfides occur up to a few hundred metres above the orebody, attesting to continuing hydrothermal activity.


Materials ◽  
2003 ◽  
Author(s):  
Thomas Siegmund ◽  
Ashwin Hattiangadi

High temperature ceramic matrix composites (CMCs) are material considered in many applications where high heat fluxes constitute a significant contribution to loading. The laminates can fulfill their function as thermal protection layers only if they stay intact, i.e. without internal delaminations or spalling, such that the heat flux remains undisturbed by such events. Crack bridging is an important effect in CMCs, and its implication to CMC laminates under thermal loading is investigated.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Minsuk Seo ◽  
John R. Echols ◽  
A. Leigh Winfrey

Abstract Morphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm−2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in the form of pore formation, cracks, and resolidified melt instabilities. Mirco voids, rosette-type microfeatures, core-shell structure, particle enrichment, and submicron channels all manifest in the damaged subsurface. The formation of voids in the subsurface was determined to originate from the ductile fracture of hot tungsten by plastic flow but not developed to cracking. The voids were preferentially settled in grain boundaries, interfaces. The directionality of elongated voids and grains is biased to the heat flow vector or plasma pathway, which is the likely consequence of the thermally driven grain growth and sliding in the high-temperature conditions. The presence of a border between the transient layer and heat-affected zone is observed and attributed to plasma shock and thermal spallation of fractural tungsten at high temperature. Plasma peening-like hardening effects in tungsten were observed in the range of 22.7–46.3 GWm−2 but least in the case of the lowest heat flux, 12.5 GWm−2.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract PRESSURDIE-1 is an air-hardening hot work tool and die steel having high heat resistance and good high temperature strength properties. It is recommended for die casting dies, extrusion and forging dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-191. Producer or source: Continental Copper & Steel Industries Inc..


Alloy Digest ◽  
1963 ◽  
Vol 12 (11) ◽  

Abstract PEERLESS LCT2 is a hot work steel which possesses high heat resistance and a high degree of working hardness at elevated temperatures. This steel is best applied where hardness and resistance to abrasion are of more importance than toughness. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-140. Producer or source: Crucible Steel Company of America.


Alloy Digest ◽  
1982 ◽  
Vol 31 (4) ◽  

Abstract CRUCIBLE 309 is a non-hardenable austenitic chromium-nickel steel that has high heat-resisting characteristics. In the annealed condition it is non-magnetic or magnetic, depending on the composition. When cold worked it is very slightly magnetic. Typical applications include aircraft heaters and sulfite liquor handling equipment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SS-405. Producer or source: Crucible Specialty Metals Division, Colt Industries.


Alloy Digest ◽  
1955 ◽  
Vol 4 (7) ◽  

Abstract ARMCO 25-12 is an austenitic chromium-nickel stainless steel with high heat resisting qualities, high strength and creep values up to 2000 F. It is equivalent to AISI Type 309 stainless steel; and in the lower carbon grade is equivalent to AISI Type 309S. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-32. Producer or source: Armco Inc., Eastern Steel Division.


Sign in / Sign up

Export Citation Format

Share Document