The annual cycle of the western boundary current in the Gulf of Mexico

1993 ◽  
Vol 98 (C10) ◽  
pp. 18053 ◽  
Author(s):  
W. Sturges
Science ◽  
1976 ◽  
Vol 192 (4237) ◽  
pp. 367-369 ◽  
Author(s):  
W. STURGES ◽  
J. P. BLAHA

2017 ◽  
Vol 2 (2) ◽  
pp. 299 ◽  
Author(s):  
Xiaoming Zhai

The annual cycle of surface eddy kinetic energy (EKE) and its influence on eddy momentum fluxes are investigated using an updated record of satellite altimeter data. It is found that there is a phase difference between the annual cycles of EKE in the western boundary current regions and EKE in the interior of the subtropical gyres, suggesting that different mechanisms may be at work in different parts of the subtropical gyres. The annual cycles of EKE averaged in the two hemispheres are found to be of similar magnitude but in opposite phase. As a result, the globally-averaged EKE shows little seasonal variability. The longer record of altimeter data used in this study has brought out a clearer and simpler picture of eddy momentum fluxes in the Gulf Stream and Kuroshio Extension. Considerable seasonal variations in eddy momentum fluxes are found in the western boundary current regions, which potentially play an important role in modulating the strength of the western boundary currents and their associated recirculation gyres on the seasonal time scale.


2012 ◽  
Vol 9 (2) ◽  
pp. 977-1008 ◽  
Author(s):  
C. S. Meinen ◽  
A. R. Piola ◽  
R. C. Perez ◽  
S. L. Garzoli

Abstract. The first direct estimates of the temporal variability of the absolute transport of the Deep Western Boundary Current (DWBC) at 34.5° S in the South Atlantic Ocean are obtained using just under one year of data from a line of four pressure-equipped inverted echo sounders. Hydrographic sections collected in 2009 and 2010 confirm the presence of the DWBC, one of the main deep pathways of the Meridional Overturning Circulation, based on neutral density, temperature, salinity, and oxygen values. Both observations confirm that the DWBC reconstitutes itself after breaking into eddies in the western sub-tropical Atlantic near 8° S. The amplitude and spectral character of the DWBC transport variability are comparable with those observed at 26.5° N, where longer records exist, with the DWBC at 34.5° S exhibiting a transport standard deviation of 25 Sv and variations of ~40 Sv occurring within periods as short as a few days. There is little indication of an annual cycle in the DWBC transports, although the observation record is too short to be definitive, and the dominant time scale during the first year of the experiment was about 9–10 days. A "Monte Carlo-style" analysis using 27 yr of model output from the same location as the observations indicates that another 48–60 months of data will be required to encompass a fairly complete span of deep transport variability. The model suggests the presence of an annual cycle in DWBC transport, however the statistical significance of the annual cycle with even 27 yr of model output is low, suggesting that annual period variations in the model are weak as well.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 1041-1054 ◽  
Author(s):  
C. S. Meinen ◽  
A. R. Piola ◽  
R. C. Perez ◽  
S. L. Garzoli

Abstract. The first direct estimates of the temporal variability of the absolute transport in the Deep Western Boundary Current (DWBC) at 34.5° S in the South Atlantic Ocean are obtained using just under one year of data from a line of four pressure-equipped inverted echo sounders. Hydrographic sections collected in 2009 and 2010 confirm, based on neutral density, temperature, salinity, and oxygen values, the presence of the DWBC, one of the main deep pathways of the Meridional Overturning Circulation. Both data sets indicate that the DWBC reconstitutes itself after breaking into eddies in the western sub-tropical Atlantic near 8° S. The amplitude and spectral character of the DWBC transport variability are comparable with those observed in the North Atlantic, where longer records exist, with the DWBC at 34.5° S exhibiting a transport standard deviation of 25 Sv and variations of ∼ 40 Sv occurring within periods as short as a few days. There is little indication of an annual cycle in the DWBC transports, although the observational records are too short to be definitive. A Monte Carlo-style analysis using 27 yr of model output from the same location as the observations indicates that about 48–60 months of data will be required to fully assess the deep transport variability. The model suggests the presence of an annual cycle in DWBC transport, however its statistical significance with even 27 yr of model output is low, suggesting that seasonal variations in the model are weak.


1999 ◽  
Vol 104 (C9) ◽  
pp. 20523-20550 ◽  
Author(s):  
Víctor M. V. Vidal ◽  
Francisco V. Vidal ◽  
Eustorgio Meza ◽  
Josué Portilla ◽  
Lorenzo Zambrano ◽  
...  

2020 ◽  
Vol 33 (2) ◽  
pp. 707-726 ◽  
Author(s):  
Paige E. Martin ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg ◽  
Andrew E. Kiss ◽  
James R. Munroe ◽  
...  

AbstractClimate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.


2015 ◽  
Vol 45 (10) ◽  
pp. 2457-2469 ◽  
Author(s):  
Gordon E. Swaters

AbstractA comprehensive theoretical study of the nonlinear hemispheric-scale midlatitude and cross-equatorial steady-state dynamics of a grounded deep western boundary current is given. The domain considered is an idealized differentially rotating, meridionally aligned basin with zonally varying parabolic bottom topography so that the model ocean shallows on both the western and eastern sides of the basin. Away from the equator, the flow is governed by nonlinear planetary geostrophic dynamics on sloping topography in which the potential vorticity equation can be explicitly solved. As the flow enters the equatorial region, it speeds up and becomes increasingly nonlinear and passes through two distinguished inertial layers referred to as the “intermediate” and “inner” inertial equatorial boundary layers, respectively. The flow in the intermediate equatorial region is shown to accelerate and turn eastward, forming a narrow equatorial jet. The qualitative properties of the solution presented are consistent with the known dynamical characteristics of the deep western boundary currents as they flow from the midlatitudes into the tropics. The predominately zonal flow across the ocean basin in the inner equatorial region (and its exit from the equatorial region) is determined in Part II of this study.


Sign in / Sign up

Export Citation Format

Share Document