Planetary waves in total ozone and their relation to Antarctic ozone depletion

1995 ◽  
Vol 22 (21) ◽  
pp. 2949-2952 ◽  
Author(s):  
G. E. Bodeker ◽  
M. W. J. Scourfield
2016 ◽  
Author(s):  
Asen Grytsai ◽  
Gennadi Milinevsky ◽  
Andrew Klekociuk ◽  
Oleksandr Evtushevsky

Abstract. The quasi-stationary pattern of the Antarctic total ozone has changed during the last four decades, demonstrating an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September–November) for 1979–2014 is analyzed. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal time scales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle troposphere temperature at the southern mid-latitudes are shown. As known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts tropospheric climate. The results of this study suggest that changes in zonal ozone asymmetry accompanying the ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.


2011 ◽  
Vol 11 (10) ◽  
pp. 28945-28967
Author(s):  
V. O. Kravchenko ◽  
O. M. Evtushevsky ◽  
A. V. Grytsai ◽  
A. R. Klekociuk ◽  
G. P. Milinevsky ◽  
...  

Abstract. Stratospheric preconditions for the annual Antarctic ozone hole are analysed using the amplitude of quasi-stationary planetary waves in temperature as a predictor of total ozone column behaviour. It is found that the quasi-stationary wave amplitude in August is highly correlated with September–November total ozone over Antarctica with correlation coefficient as high as 0.83 indicating that quasi-stationary wave effects in late winter have a persisting influence on the evolution of the ozone hole during the following three months. Correlation maxima are found in both the lower and middle stratosphere. They are likely manifestations of wave activity influence on chemical ozone depletion and large-scale ozone transport, respectively. Both correlation maxima indicate that spring total ozone tends to increase in the case of amplified activity of quasi-stationary waves in late winter.


1986 ◽  
Vol 13 (12) ◽  
pp. 1327-1330 ◽  
Author(s):  
Ivar S. A. Isaksen ◽  
Frode Stordal

2010 ◽  
Vol 10 (14) ◽  
pp. 6569-6581 ◽  
Author(s):  
J. Kuttippurath ◽  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
H. K. Roscoe ◽  
...  

Abstract. The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005–2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT), where the differences are within ±3–5%. The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20–50% is observed for a few days in October–November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October–November and at Macquarie Island in July–August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.


1996 ◽  
Vol 23 (19) ◽  
pp. 2593-2596 ◽  
Author(s):  
J. H. Lienesch ◽  
W. G. Planet ◽  
M. T. DeLand ◽  
K. Laamann ◽  
R. P. Cebula ◽  
...  

2013 ◽  
Vol 6 (11) ◽  
pp. 934-939 ◽  
Author(s):  
Desmond Manatsa ◽  
Yushi Morioka ◽  
Swadhin K. Behera ◽  
Toshi Yamagata ◽  
Caxton H. Matarira

Sign in / Sign up

Export Citation Format

Share Document