Membrane strain rates in the subducting plate beneath South America

1995 ◽  
Vol 22 (16) ◽  
pp. 2321-2324 ◽  
Author(s):  
Kenneth C. Creager ◽  
Ling-Yun Chiao ◽  
John P. Winchester ◽  
E. Robert Engdahl
2021 ◽  
Author(s):  
Nipaporn (Nidnueng) Nakrong ◽  
Wim Spakman ◽  
Fangqin Chen ◽  
Gordon Lister

<p>Slab tearing in subducting plates is widely implicated in terms of the factors that control the evolution of the structural geology of the over-riding crust, here illustrated by interactions between the subducting Nazca plate and the overlying overthrust western continental margin of South America. We examine the different ways that structures above the bounding megathrusts are linked to the ripping and tearing of the subducting plate beneath, in particular focussed on the Andean orogeny at the Arica bend during the formation of the Bolivian orocline. We can create models for slab tearing by integrating seismotectonic analysis, seismic tomography, and morphotectonics. There are many features in the UU-P07 tomographic model that we cannot yet relate to the evolution of surface structure, for example, the gaps and tears beneath the Bolivian Orocline, or the separation of the detached slab we interpret as a paleo-segment of the Nazca plate, illustrating traces of an ancient subduction system. However, we can link the evolution of some surface structures to the growth of the giant kink of the Nazca slab that connects to the surface near the Arica bend. This may have driven strike-slip faulting with opposing sense-of-shear, northern south of the Bolivian Orocline. Megathrust rupture segments may be related to the polygonal kinked trace of the orogen, which is not at all a continuously curved arc. In this contribution, we relate the growth and accentuation of the Arica Bend to the evolution of the giant kink in the Nazca plate using a 4-D tectonic reconstruction.</p>


2019 ◽  
Author(s):  
Haroldo Marques ◽  
Marcelo Assumpcao ◽  
Antonio Padilha ◽  
Marcelo Banik de Padua

Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
A. Christou ◽  
J. V. Foltz ◽  
N. Brown

In general, all BCC transition metals have been observed to twin under appropriate conditions. At the present time various experimental reports of solid solution effects on BCC metals have been made. Indications are that solid solution effects are important in the formation of twins. The formation of twins in metals and alloys may be explained in terms of dislocation mechanisms. It has been suggested that twins are nucleated by the achievement of local stress-concentration of the order of 15 to 45 times the applied stress. Prietner and Leslie have found that twins in BCC metals are nucleated at intersections of (110) and (112) or (112) and (112) type of planes.In this paper, observations are reported of a transmission microscope study of the iron manganese series under conditions in which twins both were and were not formed. High strain rates produced by shock loading provided the appropriate deformation conditions. The workhardening mechanisms of one alloy (Fe - 7.37 wt% Mn) were studied in detail.


Author(s):  
M. F. Stevens ◽  
P. S. Follansbee

The strain rate sensitivity of a variety of materials is known to increase rapidly at strain rates exceeding ∼103 sec-1. This transition has most often in the past been attributed to a transition from thermally activated guide to viscous drag control. An important condition for imposition of dislocation drag effects is that the applied stress, σ, must be on the order of or greater than the threshold stress, which is the flow stress at OK. From Fig. 1, it can be seen for OFE Cu that the ratio of the applied stress to threshold stress remains constant even at strain rates as high as 104 sec-1 suggesting that there is not a mechanism transition but that the intrinsic strength is increasing, since the threshold strength is a mechanical measure of intrinsic strength. These measurements were made at constant strain levels of 0.2, wnich is not a guarantee of constant microstructure. The increase in threshold stress at higher strain rates is a strong indication that the microstructural evolution is a function of strain rate and that the dependence becomes stronger at high strain rates.


Sign in / Sign up

Export Citation Format

Share Document