slab tearing
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kitttiphon Boonma ◽  
Daniel García-Castellanos ◽  
Ivone Jiménez-Munt ◽  
Taras V. Gerya
Keyword(s):  

Author(s):  
Erwin Schettino ◽  
Claudio Marchesi ◽  
José María González-Jiménez ◽  
Edward Saunders ◽  
Károly Hidas ◽  
...  

Spinel peridotite xenoliths (one plagioclase-bearing) hosted in alkaline basalts from Tallante (southeast Spain) record the mineralogical and geochemical fingerprint of the subcontinental lithospheric mantle (SCLM) evolution beneath the southern Iberian margin. Mantle metasomatism in fertile lherzolites caused the crystallization of clinopyroxene + orthopyroxene + spinel clusters through the percolation of Miocene subalkaline melts during the westward migration of the subduction front in the western Mediterranean. In the Pliocene, heat and volatiles provided by alkaline host-magmas triggered very low melting degrees of metasomatic pyroxene-spinel assemblages, producing melt quenched to silicate glass and reactive spongy coronae around clinopyroxene and spinel. Refertilization of the Tallante peridotites induced the precipitation of base-metal sulfides (BMS) included in metasomatic clino- and orthopyroxene. These sulfides consist of pentlandite ± chalcopyrite ± bornite aggregates with homogeneous composition in terms of major elements (Ni, Fe, Cu) and semi-metals (Se, As, Te, Sb, Bi), but with wide variability of platinum-group elements (PGE) fractionation (0.14 < PdN/IrN < 30.74). Heterogeneous PGE signatures, as well as the presence of euhedral Pt-Pd-Sn-rich platinum-group minerals (PGM) and/or Au-particles within BMS, cannot be explained by conventional models of chalcophile partitioning from sulfide melt. Alternatively, we suggest that they reflect the incorporation of distinct populations of BMS, PGM, and metal nanoparticles (especially of Pt, Pd, and Au) during mantle melting and/or melt percolation. Therefore, we conclude that Miocene subalkaline melts released by asthenosphere upwelling upon slab tearing of the Iberian continental margin effectively stored metals in metasomatized domains of this sector of the SCLM. Remarkably high Au concentrations in Tallante BMS (median 1.78 ppm) support that these metasomatized domains provided a fertile source of metals, especially gold, for the ore-productive Miocene magmatism of the westernmost Mediterranean.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pierre Leffondré ◽  
Jacques Déverchère ◽  
Mourad Medaouri ◽  
Frauke Klingelhoefer ◽  
David Graindorge ◽  
...  

Subduction initiation is an important but still poorly documented process on Earth. Here, we document one of a few cases of ongoing transition between passive and active continental margins by identifying the geometrical and structural signatures that witness the tectonic inversion of the Algerian continental margin and the deep oceanic domain, located at the northern edge of the slow-rate, diffuse plate boundary between Africa and Eurasia. We have analyzed and tied 7900 km of deep seismic reflection post-stacked data over an area of ∼1200 km long and ∼120 km wide. The two-way traveltime lines were converted into depth sections in order to reconstruct and map realistic geometries of seismic horizons and faults from the seafloor down to the acoustic basement. Along the whole length of this young transitional domain, we identify a clear margin segmentation and significant changes in the tectonic signature at the margin toe and in the deep basement. While the central margin depicts a typical thick- and thin-skinned tectonic style with frontal propagation of crustal thrust ramps, the central-eastern margin (Jijel segment) reveals a higher strain focusing at the margin toe together with the largest flexural response of the oceanic lithosphere. Conversely, strain at the margin toe is limited in the western margin but displays a clear buckling of the oceanic crust up to the Spanish margin. We interpret these contrasting, segmented behavior as resulting from inherited heterogeneities in (1) the geometry of the Algerian continental margin from West to East (wrench faulting in the west, stretched margin elsewhere) and (2) the Miocene thermal state related to the diachronous opening of the Algerian basin and to the magmatic imprint of the Tethyan slab tearing at deep crustal levels. The narrow oceanic lithosphere of the Western Algerian basin is assumed to favor buckling against flexure. From the dimension and continuity of the main south-dipping blind thrusts identified at the margin toe, we reassess seismic hazards by defining potential lengths for ruptures zones leading to potential magnitudes up to 8.0 off the central and eastern Algerian margins.


Geology ◽  
2021 ◽  
Author(s):  
Toru Yamasaki ◽  
Gen Shimoda ◽  
Kenichiro Tani ◽  
Jinichiro Maeda ◽  
Futoshi Nanayama

Recent reconstructions of global plate motions suggest that the Izanagi-Pacific Ridge was subducted along the eastern margin of Eurasia at ca. 50 Ma. In the Hidaka magmatic zone (HMZ), which was located at the northeastern end of the Eurasian plate, three magmatic pulses occurred (46–45, 40–36, and 19–18 Ma). We report whole-rock geochemical and Sr-Nd-Pb isotopic data for 36 Ma high-Sr/Y (adakitic) rocks from the HMZ and show that these rocks formed by partial melting of oceanic crust and were emplaced as near-trench intrusions during ridge subduction. We reevaluate the nature of plutonic rocks in the HMZ and show that both the 46–45 and 40–36 Ma granitoids have essentially identical geochemical features. The distribution of plutons and magmatic cessation between 45 and 40 Ma are best explained by subduction of a ridge-transform intersection with a large offset of the ridge axis. The boundary between the Eocene granitoids corresponds to the position of a paleo–transform fault, and adakitic magmatism was caused by partial melting triggered by slab tearing at an overlapping spreading center. The paleoridge-transform configuration coincides with the locations of later large faults and a peridotite body.


2021 ◽  
Author(s):  
Kitttiphon Boonma ◽  
Daniel Garcia-Castellanos ◽  
Ivone Jiménez-Munt ◽  
Taras V. Gerya

2021 ◽  
Author(s):  
Eloïse Bessière ◽  
Laurent Jolivet ◽  
Romain Augier ◽  
Stéphane Scaillet ◽  
Jacques Précigout ◽  
...  

<p>Orogens closely linked to 3-D subduction dynamics are frequently non-cylindrical and the Mediterranean region is a perfect natural laboratory to observe several of them, as well as their interactions. Through the succession of extension, subduction and sometimes collision events, the kinematic reconstructions of such orogens can be difficult and the subject of active debates. The internal zones are often non-consensual, especially when their long-term Pressure-Temperature-time-deformation (P-T-t-d) evolutions are studied. This complexity is mostly due to pre-orogenic inheritance or complex interactions between the subducting lithosphere, the overriding plate and the asthenosphere. All these elements are described and documented in Mediterranean orogens, i.e., a complex shape of the Eurasian and African margins in pre-orogenic times and a complex slab retreat and tearing dynamics. Their 3-D geometry results in strongly arcuate belts, such as the Betic-Rif Cordillera, located in the westernmost part of the Mediterranean region.</p><p>Focused on the Internal Zones of the Betic-Rif Cordillera and based on recent findings (Orogen Project framework), a synthesis of the tectono-metamorphic evolution shows the relations in space and time between tectonic and P-T evolutions. The reinterpretation of the contact between peridotite massifs and Mesozoic sediments as an extensional detachment leads to a discussion of the geodynamic setting and timing of mantle exhumation. Based on new <sup>40</sup>Ar/<sup>39</sup>Ar ages in the Alpujárride Complex (metamorphic formations of the Betic Internal Zones) and a discussion of published ages in the Nevado-Filabride Complex (metamorphic formations of the Betic Internal Zones), we conclude that the age of the HP-LT metamorphism is Eocene in all the Internal Zones. A first-order observation is the contrast between the well-preserved Eocene HP-LT blueschists-facies rocks of the Eastern Alpujárride-Sebtide Complex and the younger HT-LP conditions reaching partial melting recorded in the Western Alpujárride. We propose a model where the large longitudinal variations in the P-T evolution are mainly due to (i) differences in the timing of subduction and exhumation, (ii) the nature of the subducting lithosphere and (iii) a major change in subduction dynamics at ~20 Ma associated with a slab-tearing event.</p>


2021 ◽  
Author(s):  
Nipaporn (Nidnueng) Nakrong ◽  
Wim Spakman ◽  
Fangqin Chen ◽  
Gordon Lister

<p>Slab tearing in subducting plates is widely implicated in terms of the factors that control the evolution of the structural geology of the over-riding crust, here illustrated by interactions between the subducting Nazca plate and the overlying overthrust western continental margin of South America. We examine the different ways that structures above the bounding megathrusts are linked to the ripping and tearing of the subducting plate beneath, in particular focussed on the Andean orogeny at the Arica bend during the formation of the Bolivian orocline. We can create models for slab tearing by integrating seismotectonic analysis, seismic tomography, and morphotectonics. There are many features in the UU-P07 tomographic model that we cannot yet relate to the evolution of surface structure, for example, the gaps and tears beneath the Bolivian Orocline, or the separation of the detached slab we interpret as a paleo-segment of the Nazca plate, illustrating traces of an ancient subduction system. However, we can link the evolution of some surface structures to the growth of the giant kink of the Nazca slab that connects to the surface near the Arica bend. This may have driven strike-slip faulting with opposing sense-of-shear, northern south of the Bolivian Orocline. Megathrust rupture segments may be related to the polygonal kinked trace of the orogen, which is not at all a continuously curved arc. In this contribution, we relate the growth and accentuation of the Arica Bend to the evolution of the giant kink in the Nazca plate using a 4-D tectonic reconstruction.</p>


2021 ◽  
Author(s):  
Gideon Rosenbaum ◽  
John Caulfield ◽  
Teresa Ubide ◽  
Jack Ward ◽  
Mike Sandiford ◽  
...  

<p>Subduction zones generate volcanic arcs, but there are many examples where magmatism in convergent plate boundaries occurs in unexpected locations relative to the subducting slab. These magmas are commonly also geochemically anomalous relative to the composition of neighbouring typical subduction-related rocks. The origin of such Spatially and Geochemically Anomalous arc Magmatism (SGAM) may correspond to local variations in subduction parameters, the presence of crustal and lithospheric heterogeneities, or the potential contribution of melts generated by slab tearing and slab edge effects. Using the Holocene volcanoes in South America as a case study, we investigated spatial and geochemical patterns of volcanism along the Andean volcanic belt. Based on a series of geochemical indices, we developed a scoring system for the composition of volcanic rocks, with the lowest and highest scores indicating ‘typical’ and ‘anomalous’ arc melting processes, respectively. The results show that a number of Holocene volcanoes in South America can be unambiguously defined as SGAM. Volcanism in these localities may correspond to disruptions in the geometry of the subducting slab, or to areas affected by mantle flow in the proximity of the slab edge. To test the potential applicability of this method for plate tectonic reconstructions, we calculated geochemical anomaly scores for whole-rock analyses of volcanic rocks from other convergent boundary settings. The results show that high geochemical anomaly scores are obtained in areas where slab tearing has been documented or postulated, such as in Mount Etna (Sicily). The occurrence of anomalous magmatic rocks in older convergent plate boundary settings (e.g., Neogene rocks from the Gibraltar area) corroborates plate tectonic reconstructions that incorporated processes such as subduction segmentation, slab tearing, and the development of asthenospheric windows. Accordingly, we suggest that the recognition of SGAM from other modern and ancient arc settings may inform on similar types of processes, even in cases where the three-dimensional slab structure is no longer detectable.</p>


2021 ◽  
Author(s):  
Yaguang Chen ◽  
Hanlin Chen ◽  
Taras Gerya ◽  
Mingqi Liu

<p>Vertical tearing of subducting oceanic slabs plays an important role in the subduction dynamic worldwide, accommodating slabs motion and segmentation in subduction zones. In previous studies, several models have been proposed for the origin of vertical slab tearing – they were related to variations in the slab age, rollback rate, buoyancy, moving direction, etc. However, the physical mechanism of vertical slab tearing remains elusive. Here, we propose a new model that stable vertical tearing of subducting oceanic slabs can be generated by inversion of transform margins and controlled by the strain-weakening rheology of subducting oceanic plates that facilitate out of plane (mode-III) shear deformation inside subducting slabs. Through 3D thermo-mechanical numerical modeling, we systematically investigate the effects of transform margins length and the rheology of subducting oceanic plates on the vertical slab tearing. Numerical results show that (1) interaction between two neighboring subducting slabs decreases as the transform margins length and the resulting trench offset increase. Once the offset reaches the critical offset, sustained vertical slab tearing occurs spontaneously. (2) Strain weakening parameters are crucial in the lithospheric deformation. An intense strain weakening, with a strong and rapid lowering of internal friction coefficient, greatly facilitates the initial slabs tear and makes it sustained. (3) Slab age is also an important factor in vertical slab tearing. A longer critical offset is required for the older oceanic lithosphere. (4) The vertical tear and resulting slab segmentation can operate as a self-sustained dynamical process (i.e., can be defined as dynamical instability of oblique subduction that gives preference to segmented slabs). Once a vertical tear is formed, it can propagate steadily for a long time.</p>


2021 ◽  
Author(s):  
Laurent Husson ◽  
Nicolas Riel ◽  
Sonny Aribowo ◽  
Christine Authemayou ◽  
Danny Hilman Natawidjaja ◽  
...  

<p>At the far end of the Tethyan realm, the Indo-Australian plate subducts in the Java and Banda trenches. Across the trench, a checkerboard-like distribution of continental and oceanic units sets the geodynamic stage since the Australian continent docked into the subduction zone a few Myr ago: to the East, the Australian continent now subducts and collides with the mostly oceanic Wallacea while to the West, the Indian oceanic plate subducts underneath continental Sundaland. We hypothesize that this fast and transient geodynamic regime explains many observations that characterize the region over the last few Myr: slab rollback and formation of the Banda arc, subsidence of the Weber superdeep seafloor to more than 7000 m, back-arc thrusting in Flores, dynamic subsidence in Sundaland and Sahul, and controversial slab tearing underneath Timor. We set out to model subduction dynamics accounting for the complex assemblage of plates in a real-Earth perspective, using the fast thermo-mechanical code LaMEM that allows dealing with complex setups. Our results predict the winding of the subduction zone around Papua, ultimately retreating into the Banda embayment, thereby causing the extreme dynamic subsidence of the Banda seafloor. Geometrical consistency imposes coeval slab tearing underneath Timor while the slab rolls back. The formation of the Flores backthrust quickly follows Australian collision with Wallacea and propagates westward in continental Sundaland. Shortening rates quickly drop tenfold while entering Sundaland, in Java, in agreement with kinematic and structural observations. In the geologically near future, the back-arc thrust is predicted to reverse the subduction polarity, Wallacea being on the brink to subduct southward underneath Australia. Last, transient mantle flow expectedly causes dynamic subsidence in Sahul and Sundaland, thereby profoundly remodeling the physiography of the entire region.</p>


Sign in / Sign up

Export Citation Format

Share Document