A numerical model of heat and water movement in furrow-sown water repellent sandy soils

1996 ◽  
Vol 32 (10) ◽  
pp. 3051-3061 ◽  
Author(s):  
Bangjie Yang ◽  
Paul S. Blackwell ◽  
David F. Nicholson
1996 ◽  
Vol 184 (3-4) ◽  
pp. 153-173 ◽  
Author(s):  
J.C. van Dam ◽  
J.H.M. Wösten ◽  
A. Nemes

2018 ◽  
Vol 17 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Yichen Wang ◽  
Xiaofang Wang ◽  
Henry Wai Chau ◽  
Bingcheng Si ◽  
Ning Yao ◽  
...  

Soil Research ◽  
1972 ◽  
Vol 10 (1) ◽  
pp. 35 ◽  
Author(s):  
FJ Roberts ◽  
BA Carbon

The hydrophobic organic skins on sand grains were resistant to removal by solvents such as cold water, concentrated acid, diethyl ether, ethanol, benzene, chloroform, and acetone. Prolonged treatment with hot diethyl ether, ethanol, and benzene removed part of the coating. Treatment with dilute solutions of alkali removed the skin as suspended particles. Compounds within the very stable humic fraction of the soil organic matter appeared to be mainly responsible for water repellence in soils. Deposits of fresh organic materials could also produce water repellent properties.


2020 ◽  
Author(s):  
Felix Abayomi Ogunmokun ◽  
Rony Wallach

<p>Soil water repellency is a common feature of dry soils under permanent vegetation and drought conditions. Soil-water hydrology is markedly affected by soil-water repellency as it hinders infiltration, leading to enhanced surface runoff and soil erosion. Although this phenomenon was primarily ascribed to sandy soils, it has been observed in loam, clay, and peat soils in dry and humid regions. One detrimental effect of soil water repellency on plants is the reduction of soil water availability that stems from the non-uniform water retention and flow in preferential pathways (gravity-induced fingers) with relatively dry soil volume among these paths. It was recently discovered that prolonged irrigation with treated wastewater, a widely used alternative in Israel and other Mediterranean countries due to the limited freshwater, triggers soil water repellency which invariably resulted in preferential flow development in the field. Due to climate change events, the use of treated wastewater for irrigation as a means of freshwater conservation is expected to widen, including in countries that are not considered dry.</p><p>While a vast amount of research has been devoted to characterizing the preferential flow in water repellent soils, the effect of this flow regime on the spatial distribution of salt and fertilizers in the root zone was barely investigated. Results from a commercial citrus orchard irrigated with treated wastewater that includes the spatial and temporal distribution of preferential flow in the soil profile measured by ERT will be demonstrated. The associated spatial distribution of salinity, nitrate, phosphate, and SAR in the soil profile will be shown as well.  We investigated the efficacy of two nonionic surfactants application to remediate hydrophobic sandy soils both in the laboratory and field. The effect of the surfactant application to the water repellent soils in the orchards on the spatial distribution of soil moisture and the associated agrochemicals will be presented and discussed.</p>


Soil Research ◽  
2015 ◽  
Vol 53 (2) ◽  
pp. 168 ◽  
Author(s):  
L. L. Walden ◽  
R. J. Harper ◽  
D. S. Mendham ◽  
D. J. Henry ◽  
J. B. Fontaine

There is an increasing interest in eucalypt reforestation for a range of purposes in Australia, including pulp-wood production, carbon mitigation and catchment water management. The impacts of this reforestation on soil water repellency have not been examined despite eucalypts often being associated with water repellency and water repellency having impacts on water movement across and within soils. To investigate the role of eucalypt reforestation on water repellency, and interactions with soil properties, we examined 31 sites across the south-west of Western Australia with paired plots differing only in present land use (pasture v. plantation). The incidence and severity of water repellency increased in the 5–8 years following reforestation with Eucalyptus globulus. Despite this difference in water repellency, there were no differences in soil characteristics, including soil organic carbon content or composition, between pasture and plantation soils, suggesting induction by small amounts of hydrophobic compounds from the trees. The incidence of soil water repellency was generally greater on sandy-surfaced (<10% clay content) soils; however, for these soils 72% of the pasture sites and 31% of the plantation were not water repellent, and this was independent of measured soil properties. Computer modelling revealed marked differences in the layering and packing of waxes on kaolinite and quartz surfaces, indicating the importance of interfacial interactions in the development of soil water repellency. The implications of increased water repellency for the management of eucalyptus plantations are considered.


CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105637
Author(s):  
Seyedeh Mehrnoosh Mirbabaei ◽  
Mahmoud Shabanpour ◽  
Jos van Dam ◽  
Coen Ritsema ◽  
Aliasghar Zolfaghari ◽  
...  

2007 ◽  
Vol 21 (17) ◽  
pp. 2385-2389 ◽  
Author(s):  
Dara M. Park ◽  
John L. Cisar ◽  
Karen E. Williams ◽  
Dayle K. McDermitt ◽  
William P. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document