scholarly journals Quantification of interplate coupling in subduction zones and forearc topography

1997 ◽  
Vol 24 (13) ◽  
pp. 1563-1566 ◽  
Author(s):  
R. Cattin ◽  
H. Lyon-Caen ◽  
J. Chéry
2020 ◽  
Author(s):  
Satoru Baba ◽  
Shunsuke Takemura ◽  
Kazushige Obara ◽  
Akemi Noda

2020 ◽  
Author(s):  
Mohammad Yuzariyadi ◽  
Kosuke Heki

<p>Enhanced interplate coupling has been found for segments adjacent along-strike to megathrust faults after the 2003 Tokachi-Oki and the 2011 Tohoku-Oki earthquakes, NE Japan, and was interpreted as acceleration of the subducting Pacific Plate slab. A similar enhanced coupling was also reported for the segments to the north of the rupture area of the 2010 Maule earthquake, central Chile. We utilize available GNSS data to find such enhanced coupling in worldwide subduction zones including NE Japan, central and northern Chile, Sumatra, and Mexico to investigate their common features. Our study revealed that the accelerations of landward movement of 2.1-9.0 mm per year appeared in adjacent segments following the 2014 Iquique (Chile), the 2007 Bengkulu (Sumatra), and the 2012 Oaxaca (Mexico) earthquakes. We also confirmed that the enhanced coupling is associated with the increase of seismicity for all these six cases. We found that the degree of enhancement depends on the length of the slab and the magnitude of the earthquake, which is consistent with the simple 2-dimensional model proposed earlier.</p>


2020 ◽  
Author(s):  
Satoru Baba ◽  
Shunsuke Takemura ◽  
Kazushige Obara ◽  
Akemi Noda

2020 ◽  
Vol 47 (14) ◽  
Author(s):  
Satoru Baba ◽  
Shunsuke Takemura ◽  
Kazushige Obara ◽  
Akemi Noda

2015 ◽  
Vol 37 ◽  
pp. 61-64
Author(s):  
Marco Scambelluri ◽  
Enrico Cannaò ◽  
Mattia Gilio ◽  
Marguerite Godard

2018 ◽  
Author(s):  
David Fernández-Blanco

Orogenic plateaus have raised abundant attention amongst geoscientists during the last decades, offering unique opportunities to better understand the relationships between tectonics and climate, and their expression on the Earth’s surface.Orogenic plateau margins are key areas for understanding the mechanisms behind plateau (de)formation. Plateau margins are transitional areas between domains with contrasting relief and characteristics; the roughly flat elevated plateau interior, often with internally drained endorheic basins, and the external steep areas, deeply incised by high-discharge rivers. This thesis uses a wide range of structural and tectonic approaches to investigate the evolution of the southern margin of the Central Anatolian Plateau (CAP), studying an area between the plateau interior and the Cyprus arc. Several findings are presented here that constrain the evolution, timing and possible causes behind the development of this area, and thus that of the CAP. After peneplanation of the regional orogeny, abroad regional subsidence took place in Miocene times in the absence of major extensional faults, which led to the formation of a large basin in the northeast Mediterranean. Late Tortonian and younger contractional structures developed in the interior of the plateau, in its margin and offshore, and forced the inversion tectonics that fragmented the early Miocene basin into the different present-day domains. The tectonic evolution of the southern margin of the CAP can be explained based on the initiation of subduction in south Cyprus and subsequent thermo-mechanical behavior of this subduction zone and the evolving rheology of the Anatolian plate. The Cyprus slab retreat and posterior pull drove subsidence first by relatively minor stretching of the crust and then by its flexure. The growth by accretion and thickening of the upper plate, and that of the associated forearc basins system, caused by accreting sediments, led to rheological changes at the base of the crust that allowed thermal weakening, viscous deformation, driving subsequent surface uplift and raising the modern Taurus Mountains. This mechanism could be responsible for the uplifted plateau-like areas seen in other accretionary margins. ISBN: 978-90-9028673-0


2017 ◽  
Author(s):  
Shannon E. Graham ◽  
◽  
John P. Loveless ◽  
John P. Loveless ◽  
Brendan J. Meade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document