scholarly journals Evolution of fault systems at a strike-slip plate boundary: A viscoelastic model

1998 ◽  
Vol 25 (15) ◽  
pp. 2881-2884 ◽  
Author(s):  
Mousumi Roy
2020 ◽  
Author(s):  
Alina Polonia ◽  
Sgroi Tiziana ◽  
Artoni Andrea ◽  
Barberi Graziella ◽  
Billi Andrea ◽  
...  

<p>The Calabria Arc (CA) is the narrowest subduction-rollback system on Earth, and it has been struck repeatedly by destructive historical earthquakes often associated with tsunamis. In spite of the detailed earthquake catalogue, the source parameters of most historic earthquakes are still debated, especially for earthquakes that may have been generated offshore.</p><p>The subduction system is characterized by an irregular plate boundary reflecting the presence of continental blocks, indenters, and different rates of continental collision. Convergence between Eurasia and Africa produces both compressive and transtensional deformation in the offshore accretionary complex. Shortening occurs along the outer deformation front and along splay faults accommodating differences in rheology and basal detachment depth. Two oppositely dipping strike-slip/transtensional fault systems, i.e., the Ionian (IF) and Alfeo-Etna (AEF) faults produce deep fragmentation of the subduction system and the collapse of the accretionary wedge, in agreement with geodetic models suggesting plate divergence in this region. Transtensional lithospheric faults segmenting the subduction system are punctuated by mantle-rooted diapirism driven by arc orthogonal rifting, collapse of the accretionary wedge, and deep fragmentation of the subduction system along pre-existing Mesozoic transform faults.</p><p>Seismological observations in the Western Ionian Sea highlight the presence of earthquake clusters along wide and deep-seated active tectonic structures, which were proposed as likely seismogenic sources for large magnitude historic earthquakes/tsunamis in the region. Low to moderate magnitude earthquakes occurring offshore were relocated using a new 1D velocity model for the Ionian Sea, constrained by geological and geophysical observations, which included data collected by NEMO-SN1 seafloor observatory. Seismological data from NEMO-SN1 were integrated with observations carried out by over 100 land stations of the INGV network, and led us to compile a map of 3D distribution for over 2600 events. 3D locations and focal mechanism analyses allowed us to highlight local lithospheric structure. Although seismicity appears scattered in a wide corridor of deformation within the subduction system, we observe alignments of events along main fault systems with strike-slip and extensional mechanisms. Moreover, results from seismological data analysis, i.e., misfits in the 3D distribution of hypocenters and tomographic maps, could be explained by the presence of an anomalous area between the two structures, characterized by thinned lithosphere probably caused by incipient rifting, as suggested by seismic reflection images and geodynamic interpretations.  </p>


Geology ◽  
2000 ◽  
Vol 28 (4) ◽  
pp. 355 ◽  
Author(s):  
Nina Kukowski ◽  
Thies Schillhorn ◽  
Ernst R. Flueh ◽  
Katrin Huhn

Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1211-1239 ◽  
Author(s):  
Thomas van der Werf ◽  
Vasileios Chatzaras ◽  
Leo Marcel Kriegsman ◽  
Andreas Kronenberg ◽  
Basil Tikoff ◽  
...  

Abstract. The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene–Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750–890 °C and pressures of 400–560 MPa, corresponding to 15–22 km depth. A hot crustal geotherm of 40 ° C km−1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12–33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12–17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1–1.3×1020 Pa ⋅ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016–1019 Pa ⋅ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ⋅ s, which indicates the lack of an upper-mantle lid beneath northern Baja California. Our data show that during post-seismic transients, the upper mantle and the lower crust in the Pacific–Baja California plate boundary are characterized by similar and low differential stress. Transient viscosity of the lower crust is similar to the viscosity of the upper mantle.


Sign in / Sign up

Export Citation Format

Share Document