scholarly journals Interannual variability in the troposphere and stratosphere of the southern hemisphere winter

1998 ◽  
Vol 103 (D12) ◽  
pp. 13787-13799 ◽  
Author(s):  
Yuhji Kuroda ◽  
Kunihiko Kodera
1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


2009 ◽  
Vol 22 (24) ◽  
pp. 6653-6678 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Gabriel A. Vecchi

Abstract A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of the period 1981–2005 are generated. The correlation of yearly Atlantic hurricane counts with observations is greater than 0.8 when the model is averaged over the four realizations, supporting the view that the random part of this annual Atlantic hurricane frequency (the part not predictable given the SSTs) is relatively small (<2 hurricanes per year). Correlations with observations are lower in the east, west, and South Pacific (roughly 0.6, 0.5, and 0.3, respectively) and insignificant in the Indian Ocean. The model trends in Northern Hemisphere basin-wide frequency are consistent with the observed trends in the International Best Track Archive for Climate Stewardship (IBTrACS) database. The model generates an upward trend of hurricane frequency in the Atlantic and downward trends in the east and west Pacific over this time frame. The model produces a negative trend in the Southern Hemisphere that is larger than that in the IBTrACS. The same model is used to simulate the response to the SST anomalies generated by coupled models in the World Climate Research Program Coupled Model Intercomparison Project 3 (CMIP3) archive, using the late-twenty-first century in the A1B scenario. Results are presented for SST anomalies computed by averaging over 18 CMIP3 models and from individual realizations from 3 models. A modest reduction of global and Southern Hemisphere tropical cyclone frequency is obtained in each case, but the results in individual Northern Hemisphere basins differ among the models. The vertical shear in the Atlantic Main Development Region (MDR) and the difference between the MDR SST and the tropical mean SST are well correlated with the model’s Atlantic storm frequency, both for interannual variability and for the intermodel spread in global warming projections.


2021 ◽  
pp. 1-59
Author(s):  
Soichiro Hirano ◽  
Masashi Kohma ◽  
Kaoru Sato

AbstractThe relation between interannual variability of stratospheric final warming (SFW) and tropospheric circulation in the Southern Hemisphere (SH) is explored using reanalysis data and a linear barotropic model. The analysis is focused on quasi-stationary waves with zonal wavenumber 1 (s = 1 QSWs; s is zonal wavenumber), which are the dominant component of the SH extratropical planetary waves.First, interannual variability of SFW is investigated in terms of amplitudes of stratospheric and tropospheric s = 1 QSWs, and wave transmission properties of the mean flow from the late austral winter to spring. Upward Eliassen–Palm flux due to s = 1 QSWs is larger from the stratosphere down to the middle troposphere in early-SFW years than late-SFW years. More favorable conditions for propagation of s = 1 stationary waves into the stratosphere are identified in early-SFW years. These results indicate that the amplification of tropospheric s = 1 QSWs and the favorable conditions for their propagation into the stratosphere lead to the amplification of stratospheric s = 1 QSWs, and hence earlier SFWs.Next, numerical calculations using a linear barotropic model are performed to explore how tropospheric s = 1 QSWs at high latitudes amplifies in early-SFW years. By using tropical Rossby wave source and horizontal winds in the reanalysis data as a source and background field, respectively, differences in s = 1 steady responses between early- and late-SFWs are examined at high latitudes. It is suggested that the larger amplitudes of tropospheric s = 1 QSWs in early-SFW years are attributed to differences in wave propagation characteristics associated with structure of the midlatitude jets in austral spring.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 259 ◽  
Author(s):  
Zhongda Lin

Extratropical teleconnections significantly affect the climate in subtropical and mid-latitude regions. Understanding the variability of atmospheric teleconnection in the Southern Hemisphere, however, is still limited in contrast with the well-documented counterpart in the Northern Hemisphere. This study investigates the interannual variability of mid-latitude circulation in the Southern Hemisphere in austral summer based on the ERA-Interim reanalysis dataset during 1980–2016. A stationary mid-latitude teleconnection is revealed along the strong Southern Hemisphere westerly jet over the South Atlantic and South Indian Ocean (SAIO). The zonally oriented SAIO pattern represents the first EOF mode of interannual variability of meridional winds at 200 hPa over the region, with a vertical barotropic structure and a zonal wavenumber of 4. It significantly modulates interannual climate variations in the subtropical Southern Hemisphere in austral summer, especially the opposite change in rainfall and surface air temperature between Northwest and Southeast Australia. The SAIO pattern can be efficiently triggered by divergences over mid-latitude South America and the southwest South Atlantic, near the entrance of the westerly jet, which is probably related to the zonal shift of the South Atlantic Convergence Zone. The triggered wave train is then trapped within the Southern Hemisphere westerly jet waveguide and propagates eastward until it diverts northeastward towards Australia at the jet exit, in addition to portion of which curving equatorward at approximately 50° E towards the southwest Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document