Formation of sulfur dioxide and methanesulfonic acid in the photooxidation of dimethyl sulfide in the air

1982 ◽  
Vol 9 (5) ◽  
pp. 583-586 ◽  
Author(s):  
Shiro Hatakeyama ◽  
Michio Okuda ◽  
Hajime Akimoto
2015 ◽  
Vol 112 (44) ◽  
pp. 13514-13519 ◽  
Author(s):  
Véronique Perraud ◽  
Jeremy R. Horne ◽  
Andrew S. Martinez ◽  
Jaroslaw Kalinowski ◽  
Simone Meinardi ◽  
...  

Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.


2012 ◽  
Vol 12 (21) ◽  
pp. 10257-10269 ◽  
Author(s):  
T. Chen ◽  
M. Jang

Abstract. To improve the model prediction for the formation of H2SO4 and methanesulfonic acid (MSA), aerosol-phase reactions of gaseous dimethyl sulfide (DMS) oxidation products [e.g., dimethyl sulfoxide (DMSO)] in aerosol have been included in the DMS kinetic model with the recently reported gas-phase reactions and their rate constants. To determine the rate constants of aerosol-phase reactions of both DMSO and its major gaseous products [e.g., dimethyl sulfone (DMSO2) and methanesulfinic acid (MSIA)], DMSO was photooxidized in the presence of NOx using a 2 m3 Teflon film chamber. The rate constants tested in the DMSO kinetic mechanisms were then incorporated into the DMS photooxidation mechanism. The model simulation using the newly constructed DMS oxidation mechanims was compared to chamber data obtained from the phototoxiation of DMS in the presence of NOx. Within 120-min simulation, the predicted concentrations of MSA increase by 200–400% and those of H2SO4, by 50–200% due to aerosol-phase chemistry. This was well substantiated with experimental data. To study the effect of coexisting volatile organic compounds, the photooxidation of DMS in the presence of isoprene and NOx has been simulated using the newly constructed DMS kinetic model integrated with the Master Chemical Mechanism (MCM) for isoprene oxidation, and compared to chamber data. With the high concentrations of DMS (250 ppb) and isoprene (560–2248 ppb), both the model simulation and experimental data showed an increase in the yields of MSA and H2SO4 as the isoprene concentration increased.


2016 ◽  
Vol 16 (8) ◽  
pp. 4771-4783 ◽  
Author(s):  
Mingxi Yang ◽  
Thomas G. Bell ◽  
Frances E. Hopkins ◽  
Timothy J. Smyth

Abstract. Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (∼  70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.


1993 ◽  
Vol 17 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Donald C. Thornton ◽  
Alan R. Bandy

1993 ◽  
Vol 98 (D12) ◽  
pp. 23291 ◽  
Author(s):  
James M. Hoell ◽  
Douglas D. Davis ◽  
Gerald L. Gregory ◽  
Robert J. McNeal ◽  
Richard J. Bendura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document