Electron density and whistler mode propagation characteristics at 7000 km altitude in the auroral zone and polar cap

1984 ◽  
Vol 89 (A6) ◽  
pp. 3945 ◽  
Author(s):  
M. Temerin
2002 ◽  
Vol 20 (11) ◽  
pp. 1711-1724 ◽  
Author(s):  
H. Laakso ◽  
R. Pfaff ◽  
P. Janhunen

Abstract. Forty-five months of continuous spacecraft potential measurements from the Polar satellite are used to study the average electron density in the magnetosphere and its dependence on geomagnetic activity and season. These measurements offer a straightforward, passive method for monitoring the total electron density in the magnetosphere, with high time resolution and a density range that covers many orders of magnitude. Within its polar orbit with geocentric perigee and apogee of 1.8 and 9.0 RE, respectively, Polar encounters a number of key plasma regions of the magnetosphere, such as the polar cap, cusp, plasmapause, and auroral zone that are clearly identified in the statistical averages presented here. The polar cap density behaves quite systematically with season. At low distance (~2 RE), the density is an order of magnitude higher in summer than in winter; at high distance (>4 RE), the variation is somewhat smaller. Along a magnetic field line the density declines between these two altitudes by a factor of 10–20 in winter and by a factor of 200–1000 in summer. A likely explanation for the large gradient in the summer is a high density of heavy ions that are gravitationally bound in the low-altitude polar cap. The geomagnetic effects are also significant in the polar cap, with the average density being an order of magnitude larger for high Kp; for an individual case, the polar cap density may increase even more dramatically. The plasma density in the cusp is controlled primarily by the solar wind variables, but nevertheless, they can be characterized to some extent in terms of the Kp index. We also investigate the local time variation of the average density at the geosynchronous distance that appears to be in accordance with previous geostationary observations. The average density decreases with increasing Kp at all MLT sectors, except at 14–17 MLT, where the average density remains constant. At all MLT sectors the range of the density varies by more than 3 orders of magnitude, since the geostationary orbit may cut through different plasma regions, such as the plasma sheet, trough, and plasmasphere.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; plasmasphere; polar cap phenomena)


2002 ◽  
Vol 20 (11) ◽  
pp. 1725-1735 ◽  
Author(s):  
H. Laakso ◽  
R. Pfaff ◽  
P. Janhunen

Abstract. Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE) polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE) in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found that the density tends to be an order of magnitude higher on the day-side (~1 cm-3) than on the nightside (~0.1–1 cm-3), particularly during low Kp.Key words. Magnetospheric physics (auroral phenomena; plasmasphere; polar cap phenomena)


1984 ◽  
Vol 31 (3) ◽  
pp. 487-493 ◽  
Author(s):  
S. S. Sazhin

Conditions for whistler-mode trapping in the magnetospheric ducts are considered. The plasma model includes electron temperature and anisotropy, and there are no restrictions on the value of the wave normal angle. It is pointed out that the range of the wave normal angles for which whistler-mode waves can be trapped in the ducts with enhanced electron density increases when the electron temperature and (or) anisotropy increases; the corresponding increase also takes place for the average wave normal angle when whistler-mode waves are trapped in the ducts that have a deficiency in electron density. The limits of applicability of a simplified formula derived by Sazhin & Sazhina, for whistler-mode propagation in a hot anisotropic plasma, are clarified.


Ultrasonics ◽  
2021 ◽  
Vol 114 ◽  
pp. 106369
Author(s):  
James M. Hughes ◽  
Munawwar Mohabuth ◽  
Andrei Kotousov ◽  
Ching-Tai Ng

2000 ◽  
Vol 18 (9) ◽  
pp. 1043-1053 ◽  
Author(s):  
A. M. Smith ◽  
S. E. Pryse ◽  
L. Kersley

Abstract. Observations by the EISCAT Svalbard radar in summer have revealed electron density enhancements in the magnetic noon sector under conditions of IMF Bz southward. The features were identified as possible candidates for polar-cap patches drifting anti-Sunward with the plasma flow. Supporting measurements by the EISCAT mainland radar, the CUTLASS radar and DMSP satellites, in a multi-instrument study, suggested that the origin of the structures lay upstream at lower latitudes, with the modulation in density being attributed to variability in soft-particle precipitation in the cusp region. It is proposed that the variations in precipitation may be linked to changes in the location of the reconnection site at the magnetopause, which in turn results in changes in the energy distribution of the precipitating particles.Key words: Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; polar ionosphere)


2016 ◽  
Vol 34 (12) ◽  
pp. 1243-1253 ◽  
Author(s):  
Mark B. Moldwin ◽  
Shasha Zou ◽  
Tom Heine

Abstract. The name “plume” has been given to a variety of plasma structures in the Earth's magnetosphere and ionosphere. Some plumes (such as the plasmasphere plume) represent elevated plasma density, while other plumes (such as the equatorial F region plume) represent low-density regions. Despite these differences these structures are either directly related or connected in the causal chain of plasma redistribution throughout the system. This short review defines how plumes appear in different measurements in different regions and describes how plumes can be used to understand magnetosphere–ionosphere coupling. The story of the plume family helps describe the emerging conceptual framework of the flow of high-density–low-latitude ionospheric plasma into the magnetosphere and clearly shows that strong two-way coupling between ionospheric and magnetospheric dynamics occurs not only in the high-latitude auroral zone and polar cap but also through the plasmasphere. The paper briefly reviews, highlights and synthesizes previous studies that have contributed to this new understanding.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 351
Author(s):  
Bruno Zossi ◽  
Hagay Amit ◽  
Mariano Fagre ◽  
Ana G. Elias

We analyze the auroral boundary corrected geomagnetic latitude provided by the Auroral Boundary Index (ABI) database to estimate long-term changes of core origin in the area enclosed by this boundary during 1983–2016. We design a four-step filtering process to minimize the solar contribution to the auroral boundary temporal variation for the northern and southern hemispheres. This process includes filtering geomagnetic and solar activity effects, removal of high-frequency signal, and additional removal of a ~20–30-year dominant solar periodicity. Comparison of our results with the secular change of auroral plus polar cap areas obtained using a simple model of the magnetosphere and a geomagnetic core field model reveals a decent agreement, with area increase/decrease in the southern/northern hemisphere respectively for both observations and model. This encouraging agreement provides observational evidence for the surprising recent decrease of the auroral zone area.


2006 ◽  
Vol 24 (6) ◽  
pp. 1665-1684 ◽  
Author(s):  
R. Maggiolo ◽  
J. A. Sauvaud ◽  
D. Fontaine ◽  
A. Teste ◽  
E. Grigorenko ◽  
...  

Abstract. This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.


Sign in / Sign up

Export Citation Format

Share Document