Boundary layer flow characteristics at the Georg von Neumayer Antarctic Station in summer 1983

1985 ◽  
Vol 90 (D1) ◽  
pp. 2261
Author(s):  
Christoph Kottmeier
2017 ◽  
Vol 379 ◽  
pp. 48-57 ◽  
Author(s):  
Cheng Hsiung Kuo ◽  
Hwa Wei Lin ◽  
Chih Tao Chai ◽  
Fred Cheng

Alterations of boundary layer separation along the upper-rear surface of a baseline and slit cylinder and the formation of a vortex in the near-wake are investigated by particle image velocimetry (PIV) at Reynolds number 1000. The slit ratio (S/D) is 0.3. The phase-lock flow structures are referred to the time-dependent volume flux at the slit exit and are achieved by the modified phase-averaged technique. The alterations and the evolution of boundary-layer flow along the upper-rear surface are demonstrated by the phase-lock flow structures. It is found that the alternate blowing and suction at the slit exit serves as a perturbation to the boundary layer near the shoulder of the slit cylinder leading to a significant delay of flow separation and the flow reattachment of boundary-layer flow along the upper-rear surface of the cylinder. After perturbation, the vortex street behind a slit cylinder is more organized and stronger than that behind a baseline cylinder at Reynolds number 1000.


2009 ◽  
Vol 74 ◽  
pp. 157-160
Author(s):  
Jing Chuen Lin ◽  
An Shik Yang ◽  
Li Yu Tseng

The main purpose of active flow control research is to develop a cost-effective technology that has the potential for inventive advances in aerodynamic performance and maneuvering compared to conventional approaches. It can be essential to thoroughly understand the flow characteristics of the formation and interaction of a synthetic jet with external crossflow before formulating a practicable active flow control strategy. In this study, the theoretical model used the transient three-dimensional conservation equations of mass and momentum for compressible, isothermal, turbulent flows. The motion of a movable membrane plate was also treated as the moving boundary by prescribing the displacement on the plate surface. The predictions by the computational fluid dynamics (CFD) code ACE+® were compared with measured transient phase-averaged velocities of Rumsey et al. for software validation. The CFD software ACE+® was utilized for numerical calculations to probe the time evolution of the development process of the synthetic jet and its interaction within a turbulent boundary layer flow for a complete actuation cycle.


2011 ◽  
Vol 15 (3) ◽  
pp. 721-734 ◽  
Author(s):  
Arous Madi ◽  
Amina Mataoui ◽  
Zahia Bouahmed

The influence of the upstream flow characteristics on the behavior of the flow over a shallow cavity and on the reattachment phenomenon is examined in this paper. Accordingly, a comparison of the cavity?s flow structure is performed for two different upstream flows: the wall jet flow and the boundary layer flow. The wall jet possesses a particular structure with two regions: an inner layer analogous to that of a boundary layer and an outer layer similar to that of a free jet; this layer is an additional source of turbulence production in addition to that of the inner shear layer. The present study interested to the effect of this external layer on the shallow cavity?s flow. The numerical approach is based on the low Reynolds stress-omega turbulence model. Fluent 6.3 and the pre-processor Gambit 2.3 are used for the computation. The numerical results indicate that the flow structure is very sensitive to the upstream flow?s characteristics. Indeed, for the same Reynolds number and the same boundary layer thickness at the cavity leading edge, the cavity flow structure in a wall jet upstream flow case differs considerably from that of a boundary layer upstream flow. The most important finding is the earlier reattachment process in the wall jet inflow case, where an important reduction of the reattachment length is observed compared to that of a cavity under a boundary layer flow.


2008 ◽  
Vol 2008.45 (0) ◽  
pp. 169-170
Author(s):  
Masataka SHIRAKASHI ◽  
Tsutomu TAKAHASHI ◽  
Mamoru KANEKO

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jitender Singh ◽  
U. S. Mahabaleshwar ◽  
Gabriella Bognár

AbstractMotivated from numerous practical applications, the present theoretical and numerical work investigates the nonlinear magnetohydrodynamic (MHD) laminar boundary layer flow of an incompressible, viscous fluid over a porous stretching sheet in the presence of suction/injection (mass transpiration). The flow characteristics are obtained by solving the underlying highly nonlinear ordinary differential equation using homotopy analysis method. The effect of parameters corresponding to suction/injection (mass transpiration), applied magnetic field, and porous stretching sheet parameters on the nonlinear flow is investigated. The asymptotic limits of the parameters regarding the flow characteristics are obtained mathematically, which compare very well with those obtained using the homotopy analysis technique. A detailed numerical study of the laminar boundary layer flow in the vicinity of the porous stretching sheet in MHD and offers a particular choice of the parametric values to be taken in order to practically model a particular type of the event among suction and injection at the sheet surface.


Sign in / Sign up

Export Citation Format

Share Document