A role for spermidine in the bolting and flowering of Arabidopsis

2000 ◽  
Vol 108 (3) ◽  
pp. 314-320 ◽  
Author(s):  
Philip B. Applewhite ◽  
Ravindar Kaur-Sawhney ◽  
Arthur W. Galston
2014 ◽  
Vol 7 (4) ◽  
pp. 624-630 ◽  
Author(s):  
Christa E. Fettig ◽  
Ruth A. Hufbauer

AbstractBlack henbane can be either annual or biennial. We investigated which life cycle is found in four introduced western North American populations. Plants were grown in a greenhouse common garden until half were vernalized by exposure to natural winter temperatures, while the other half remained in the greenhouse above 20 C, with 16 h of light and 8 h of dark. In total the plants were monitored 313 d after germination. We measured whether plants bolted, the time it took for bolting to commence, and the size at bolting. All vernalized plants bolted after 117 d of active growth (within 26 d of the end of the vernalization treatment), whereas only 26% of the nonvernalized plants bolted after an average of 278 d of active growth. Vernalized plants bolted at a smaller size than the nonvernalized plants that bolted (28 vs. 41 leaves on average). In the nonvernalized plants, the relationship between time to bolting and size was strong, but not so with the vernalized plants. Our results indicate that introduced black henbane plants are biennial, and that vernalization is more critical to bolting and flowering than reaching a certain size. Nonetheless, the fact that nonvernalized plants were capable of bolting if grown long enough suggests that vernalization is not the only cue that can trigger reproduction in introduced populations.


1996 ◽  
Vol 71 (5) ◽  
pp. 807-812 ◽  
Author(s):  
Esther M. Kahangi ◽  
J. A. Chweya ◽  
L. S. M. Akundabweni ◽  
D. M. Munyinyi

1968 ◽  
Vol 21 (5) ◽  
pp. 883 ◽  
Author(s):  
O H Caso ◽  
NP Kefford

O. juncea plants were grown in a variety of controlled conditions to determine effects of temperature, photoperiod, and gibberellic acid treatment on stem elongation (bolting) and flowering.


Nature ◽  
1961 ◽  
Vol 192 (4805) ◽  
pp. 887-888 ◽  
Author(s):  
JULES JANICK ◽  
A. C. LEOPOLD

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1931
Author(s):  
Mengfei Li ◽  
Jie Li ◽  
Jianhe Wei ◽  
Paul W. Paré

The root of the perennial herb Angelica sinensis is a widely used source for traditional Chinese medicines. While the plant thrives in cool-moist regions of western China, early bolting and flowering (EBF) for young plants significantly reduces root quality and yield. Approaches to inhibit EBF by changes in physiology during the vernalization process have been investigated; however, the mechanism for activating EBF is still limited. Here, transcript profiles for bolted and unbolted plants (BP and UBP, respectively) were compared by transcriptomic analysis, expression levels of candidate genes were validated by qRT-PCR, and the accumulations of gibberellins (GA1, GA4, GA8, GA9 and GA20) were also monitored by HPLC-MS/MS. A total of over 72,000 unigenes were detected with ca. 2600 differentially expressed genes (DEGs) observed in the BP compared with UBP. While various signaling pathways participate in flower induction, it is genes associated with floral development and the sucrose pathway that are observed to be coordinated in EBF plants, coherently up- and down-regulating flowering genes that activate and inhibit flowering, respectively. The signature transcripts pattern for the developmental pathways that drive flowering provides insight into the molecular signals that activate plant EBF.


Sign in / Sign up

Export Citation Format

Share Document