The effect of functional information in an avionics display

Author(s):  
Carl F. Smith ◽  
Deborah A. Boehm-Davis ◽  
Ronald Chong
Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


2011 ◽  
Vol 14 (1) ◽  
pp. 21-28
Author(s):  
Mary J. Emm ◽  
Christine P. Cecconi

Clinical supervision is recognized as a distinctive area of practice and expertise, yet professional preparation in this area remains inadequate. This paper presents functional information describing the development and implementation of an experimental course on administration, supervision, and private practice, based on graduate student perceptions and preferences for course content and types of learning activities. Current pedagogical trends for universal design in learning and fostering student engagement were emphasized, including problem-based and collaborative learning. Results suggest that students were highly pleased with course content, interactive and group activities, as well as with assessment procedures used.


2015 ◽  
Vol 4 (9) ◽  
pp. 662-663
Author(s):  
Shinjung Yoo ◽  
◽  
Xin Liu ◽  
Gi seong Bang

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3652
Author(s):  
Cory Juntunen ◽  
Isabel M. Woller ◽  
Yongjin Sung

Hyperspectral three-dimensional (3D) imaging can provide both 3D structural and functional information of a specimen. The imaging throughput is typically very low due to the requirement of scanning mechanisms for different depths and wavelengths. Here we demonstrate hyperspectral 3D imaging using Snapshot projection optical tomography (SPOT) and Fourier-transform spectroscopy (FTS). SPOT allows us to instantaneously acquire the projection images corresponding to different viewing angles, while FTS allows us to perform hyperspectral imaging at high spectral resolution. Using fluorescent beads and sunflower pollens, we demonstrate the imaging performance of the developed system.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Matthias T. Ochmann ◽  
Zoltán Ivics

Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven by the need for efficient transposon-based gene vector systems, extensive studies have largely elucidated the molecular actors and actions taking place during SB transposition. Close transposon relatives and other recombination enzymes, including retroviral integrases, have served as useful models to infer functional information relevant to SB. Recently obtained structural data on the SB transposase enable a direct insight into the workings of this enzyme. These efforts cumulatively allowed the development of novel variants of SB that offer advanced possibilities for genetic engineering due to their hyperactivity, integration deficiency, or targeting capacity. However, many aspects of the process of transposition remain poorly understood and require further investigation. We anticipate that continued investigations into the structure–function relationships of SB transposition will enable the development of new generations of transposition-based vector systems, thereby facilitating the use of SB in preclinical studies and clinical trials.


2002 ◽  
Vol 1 (6) ◽  
pp. 449-458 ◽  
Author(s):  
Bruce H. Hasegawa ◽  
Kenneth H. Wong ◽  
Koji Iwata ◽  
William C. Barber ◽  
Andrew B. Hwang ◽  
...  

Dual-modality imaging is an in vivo diagnostic technique that obtains structural and functional information directly from patient studies in a way that cannot be achieved with separate imaging systems alone. Dual-modality imaging systems are configured by combining computed tomography (CT) with radionuclide imaging (using positron emission tomography (PET) or single-photon emission computed tomography (SPECT)) on a single gantry which allows both functional and structural imaging to be performed during a single imaging session without having the patient leave the imaging system. A SPECT/CT system developed at UCSF is being used in a study to determine if dual-modality imaging offers advantages for assessment of patients with prostate cancer using111 In-ProstaScint®, a radiolabeled antibody for the prostate-specific membrane antigen.111 In-ProstaScint® images are reconstructed using an iterative maximum-likelihood expectation-maximization (ML-EM) algorithm with correction for photon attenuation using a patient-specific map of attenuation coefficients derived from CT. The ML-EM algorithm accounts for the dual-photon nature of the111 In-labeled radionuclide, and incorporates correction for the geometric response of the radionuclide collimator. The radionuclide image then can be coregistered and overlaid in color on a grayscale CT image for improved localization of the functional information from SPECT. Radionuclide images obtained with SPECT/CT and reconstructed using ML-EM with correction for photon attenuation and collimator response improve image quality in comparison to conventional radionuclide images obtained with filtered backprojection reconstruction. These results illustrate the potential advantages of dual-modality imaging for improving the quality and the localization of radionuclide uptake for staging disease, planning treatment, and monitoring therapeutic response in patients with cancer.


2010 ◽  
Vol 57 (3) ◽  
pp. 192-198 ◽  
Author(s):  
Yoshikazu Naoe ◽  
Tsuyoshi Hata ◽  
Koko Tanigawa ◽  
Hiroko Kimura ◽  
Takuji Masunaga

2014 ◽  
Vol 106 (2) ◽  
pp. 808a
Author(s):  
Benjamin Regner ◽  
Daniel Tartakovsky ◽  
Terrence Sejnowski

Sign in / Sign up

Export Citation Format

Share Document