scholarly journals Absorption Spectra of Excited Atoms and Excited Ions produced by Isothermal Flash Photolysis of Metal Carbonyls in the Gas Phase

Nature ◽  
1966 ◽  
Vol 210 (5037) ◽  
pp. 730-730 ◽  
Author(s):  
A. B. CALLEAR ◽  
R. J. OLDMAN
1987 ◽  
Vol 48 (C9) ◽  
pp. C9-1113-C9-1116 ◽  
Author(s):  
J. HORMES ◽  
R. CHAUVISTRE ◽  
U. KUETGENS ◽  
U. FISCHER ◽  
I. RUPPERT
Keyword(s):  

Author(s):  
Branislav Milovanović ◽  
Jurica Novak ◽  
Mihajlo Etinski ◽  
Wolfgang Domcke ◽  
Nadja Doslic

Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy...


1983 ◽  
Vol 38 (12) ◽  
pp. 1337-1341
Author(s):  
J. Zechner ◽  
N. Getoff ◽  
I. Timtcheva ◽  
F. Fratev ◽  
St. Minchef

Abstract Flash photolysis of a series of 2-phenylindandione-1,3 derivatives substituted in the 4′ position results in both the formation of stable benzylidenephthalides and of phenylindan-1,3-dion-2-yl radicals. The u. v. absorption maxima of these radicals are dependent on the solvent and show a bathochromic shift upon substitution. These substitution effects were correlated by means of a linear free energy relationship. Attempts were made to draw conclusions concerning the changes in the gap of the states involved and their curvature due to substitution.


The explosive oxidation of acetylene, initiated homogeneously by the flash photolysis of a small quantity of nitrogen dioxide, has been investigated by flash spectroscopy. The absorption spectra of OH, CH, C 2 (singlet and triplet), C 3 , CN and NH, a number of which have not previously been observed, are described, and the relative concentrations, at all times throughout the explosion, are given. Four stages have been distinguished in the explosive reaction: 1. An initial period during which only OH appears. 2. A rapid chain branching involving all the diatomic radicals. 3. Further reaction, occurring only when oxygen is present in excess of equimolecular proportions, during which the OH concentration rises exponentially and the other radicals are totally consumed. 4. A relatively slow exponential decay of the excess radical concentration remaining after completion of stages 2 and 3. The duration of stage 1 is 0 to 3 ms. In an equimolecular mixture at 20 mm total pressure, containing 1.5 mm NO 2 , the durations of both stage 2 and stage 3 are approximately 10 -4 s and the half-life of OH in stage 4 is 0.28 ms. A preliminary interpretation of these changes and of the radical reactions is given.


2013 ◽  
Vol 11 (4) ◽  
pp. 492-501 ◽  
Author(s):  
Alzbeta Holubekova ◽  
Pavel Mach ◽  
Jan Urban

AbstractThe structural and spectral properties of coumarin derivatives in complex environments were investigated within the time-dependent density functional theory (TD DFT). Absorption spectra calculations were obtained at TD PBE0/6-31+G(d,p) level of theory for coumarin47 in the gas-phase and in various polar and non-polar organic solvents. The geometries of coumarins 6, 30, 47 and 522 in the gas phase and in inclusion complexes with the β-cyclodextrin (βCD) were determined by PM3 and DFT (HCTH/6-31G) calculations. Encapsulation of coumarin in βCD and associated changes in electronic structure produced either a red or blue shift in the absorption spectra of coumarins. A proposed cavity model for βCD-coumarin complex in water solution allowed identification of various contributions to the overall shift in the absorption spectra of coumarin upon complex formation in a solvent environment


2018 ◽  
Author(s):  
Steven Daly ◽  
Massimiliano Porrini ◽  
Frédéric Rosu ◽  
Valerie Gabelica

In solution, UV-vis spectroscopy is often used to investigate structural changes in biomolecules (i.e., nucleic acids), owing to changes in the environment of their chromophores (i.e., the nucleobases). Here we address whether action spectroscopy could achieve the same for gas-phase ions, while taking the advantage of additional mass spectrometry and ion mobility separation of complex mixtures. We therefore systematically studied the action spectroscopy of homo-base 6-mer DNA strands (dG6, dA6, dC6, dT6), and discuss the results in light of gas-phase structures validated by ion mobility spectrometry and infrared ion spectroscopy, and in light of electron binding energies measured by photoelectron spectroscopy, and calculated electronic photo-absorption spectra. When UV photons interact with oligonucleotide polyanions, two main actions may take place: (1) fragmentation and (2) electron detachment. The action spectra reconstructed from fragmentation follow the absorption spectra well, and result from multiple cycles of absorption and internal conversion. The action spectra reconstructed from the electron photodetachment (EPD) efficiency reveal interesting phenomena: EPD depends on the charge state in a manner depending on electron binding energies, and is particularly efficient for purines but not pyrimidines. EPD thus reflects not only absorption, but also particular relaxation pathways of the electronic excited states. As these pathways lead to photo-oxidation, their investigation on model gas-phase systems may prove useful to elucidate mechanisms of photo-oxidative damages, which are linked to mutations and cancers.


1980 ◽  
Vol 73 (9) ◽  
pp. 4693-4694 ◽  
Author(s):  
Nobuaki Nakashima ◽  
Haruo Inoue ◽  
Minoru Sumitani ◽  
Keitaro Yoshihara

Sign in / Sign up

Export Citation Format

Share Document