Growth of Pulmonary Alveolar Macrophages in vitro

Nature ◽  
1973 ◽  
Vol 245 (5421) ◽  
pp. 150-152 ◽  
Author(s):  
S. C. SODERLAND ◽  
Y. NAUM
2016 ◽  
Vol 22 (8) ◽  
pp. 682-695 ◽  
Author(s):  
Qin Yang ◽  
Maren J Pröll ◽  
Dessie Salilew-Wondim ◽  
Rui Zhang ◽  
Dawit Tesfaye ◽  
...  

Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1β, IL-6, and IFN-β. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1β and IFN-β were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.


1992 ◽  
Vol 60 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Dea S. Boehme ◽  
Kirk R. Maples ◽  
Rogene F. Henderson

1975 ◽  
Vol 56 (2) ◽  
pp. 503-511 ◽  
Author(s):  
S A Murphey ◽  
J S Hyams ◽  
A B Fisher ◽  
R K Root

2016 ◽  
Vol 19 (3) ◽  
pp. 485-494 ◽  
Author(s):  
R. Lin ◽  
Q. Wang ◽  
B. Qi ◽  
Y. Huang ◽  
G. Yang

Abstract Neuromedin S (NMS), a 36-amino acid neuropeptide, has been found to be involved in the regulation of the endocrine activity. It has been also detected in immune tissues in mammals, what suggests that NMS may play an important role in the regulation of immune response. The aim of this study was to demonstrate the presence of NMS receptor 1 (NMU1R) and effect of NMS in pig splenic lymphocytes (SPLs) and pulmonary alveolar macrophages (PAMs). The presence of NMU1R in pig SPLs and PAMs was respectively confirmed by reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunocytochemical methods. Furthermore, SPL proliferation was analyzed using the 3-(4,5)-dimethyl-thiahiazo-(-2-yl)-3,5-di-phenytetrazoliumromide (MTT) method. Additionally, the secretion of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in PAMs was all measured by enzyme-linked immunosorbent assay (ELISA) kits. In the present study, the results of RT-PCR and western blot analysis revealed that NMU1R mRNA and protein were both expressed in pig SPLs and PAMs, and the immunocytochemical investigations further revealed that the positive signal of NMU1R immunoreactivity was observed in plasma membranes of both SPLs and PAMs. In the in vitro study, we found that at concentrations of 0.001-1000 nM NMS alone or combined with lipopolysaccharide or phytohemagglutinin significantly increased SPL proliferation. Application of ELISA method showed that NMS could induce the secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in PAMs. These results suggest that NMS can act as a potently positive pro-inflammatory factor and immunomodulatory agent that affects the immune response of immune cells by combining with its receptor NMU1R.


Sign in / Sign up

Export Citation Format

Share Document